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List colourings with restricted lists

Tamás Fleiner?

Abstract

We prove an extension of Galvin’s theorem, namely that any graph is χ′-
edge-choosable if no odd cycle has a common colour in the lists of its edges.
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stable matchings

Let G = (V,E) be a finite loopless graph. For each edge e ∈ E, let L(e) ⊂ N be
a set of available colours for e. We say that G is L-edge-choosable if G has an L-
edge-colouring, that is, a proper edge-coloring c : E → N such that c(e) ∈ L(e) holds
for each edge e of E. Graph G is called k-edge-choosable if G is L-edge-choosable
for any L : E →

(N
k

)
. The famous list colouring conjecture states that any finite

loopless graph G is χ′(G)-edge-choosable, where chromatic index χ′(G) denotes the
minimum number of colours needed to properly colour the edges of G. By proving
the Dinitz conjecture in [2], Galvin essentially justified the list colouring conjecture
for (complete) bipartite graphs. In this note, we prove that G is L-edge-choosable
whenever L : E →

( N
χ′(G)

)
and L−1(i) is bipartite for each colour i, that is, if the edges

of no odd cycle of G contain a common colour in their lists. Our main tool to achieve
this goal is an extension of Galvin’s method. Unlike Galvin, here we shall lean on the
terminology of stable matchings.

Assume that G = (V,E) is a loopless finite graph and for each vertex v of V , a
linear order �v on the set E(v) of edges incident to v is given. A matching of G is a
set M of disjoint edges of G and matching M is stable if for each edge e of G, there
is a vertex v and an edge m of M such that m �v e holds. The well-known stable
marriage theorem states the following.

Theorem 1 (Gale-Shapley [1]). If G = (V,E) is a finite bipartite graph and �v is a
linear order on E(v) for each vertex v of G then there is a stable matching of G.

Our main result is the following.
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and Economics, Magyar Tudósok körútja 2, Budapest, H-1117. Research was supported by MTA-
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Theorem 2. Let G = (V,E) be a finite loopless graph and c : E → {1, 2, . . . , k} be a
proper edge-colouring of G. If L(e) ⊂ N is a list of at least k colours for each edge e
of G and

⋂
{L(e) : e ∈ C} = ∅ for each odd cycle C of G then G is L-edge-choosable.

Proof. For i = 1, 2, . . . define Ei := {e ∈ E : 2i − 1 ≤ c(e) ≤ 2i}. Clearly, E =
E1 ∪ E2 ∪ . . . ∪ Edk/2e. As the maximum degree in Gi = (V,Ei) is not more than
2, each component of Gi is a path or a cycle. Orient the edges of G such that
each component of each Gi becomes a directed path or a directed cycle. For edge
e = uv ∈ Ei define

r(e, v) =

{
i if v is the head of the arc that corresponds to e

k + 1− i if v is the tail of the arc that corresponds to e

Observe that if r(e, v) = r(f, v) then e and f must belong to the same set Ei and
orientations of e and f either both enter or both leave v. Hence r(e, v) = r(f, v)
implies e = f and consequently �v is a linear order on E(v) where e �v f means
that r(e, v) ≤ r(f, v). Assume now that e = uv is the oriented version of edge e ∈ Ei.
From r(e, u) = i and r(e, v) = k + 1− i we get that

|{f ∈ E(u) : f �u e}|+ |{f ∈ E(v) : f �v e}| ≤ i− 1 + (k + 1− i)− 1 = k− 1 . (1)

The above observations enable us to employ Galvin’s method to finish the proof.
Define Ei := {e ∈ E : i ∈ L(e)} as the set of i-colourable edges and let Gi := (V,Ei).
As none of the Gis contain an odd cycle by the assumption, each Gi is bipartite. For
i = 0, 1, 2, . . . define M i as a stable matching of graph Gi \ (M0 ∪ . . . ∪M i−1) with
restricted linear orders �v. Such matching exists by Theorem 1.

To show that G is L-edge-choosable, give colour i to edges of M i. Clearly, no two
edges of the same colour share a vertex and each coloured edge receives its colour
from its list. The only thing left is to show that each edge of G receives some colour.

Observe that if edge e = uv of Gi does not receive colour i, (i.e. if e 6∈ M i) then
either e ∈M j for some j < i (hence e received colour j before M i was defined) or M i

contains an edge f such that f �u e or f �v e. So if e does not receive any colour,
that is, if e 6∈

⋃
{M j : j ∈ L(e)} then there is an f j ∈ M j for each j ∈ L(e) with

f j �u e or f j �v e. As |L(e)| ≥ k, this is impossible by (1) and this contradiction
proves that the above algorithm finds a proper L-edge-colouring of G.
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