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Regular graphs are antimagic

Kristóf Bérczi, Attila Bernáth?, and Máté Vizer??

Abstract

In this note we prove - with a slight modi�cation of an argument of Cranston
et al. [2] - that k-regular graphs are antimagic for k ≥ 2.

1 Introduction

Throughout the note graphs are assumed to be simple. Given an undirected graph
G = (V,E) and a subset of edges F ⊆ E, F (v) denotes the set of edges in F incident
to node v ∈ V , and dF (v) := |F (v)| is the degree of v in F . A labeling is an
injective function f : E → {1, 2, . . . , |E|}. Given a labeling f and a subset of edges F ,
let f(F ) =

∑
e∈F f(e). A labeling is antimagic if f(E(u)) 6= f(E(v)) for any pair of

di�erent nodes u, v ∈ V . A graph is said to be antimagic if it admits an antimagic
labeling.
Harts�eld and Ringel conjectured [4] that all connected graphs on at least 3 nodes

are antimagic. The conjecture has been veri�ed for several classes of graphs (see
e.g. [3]), but is widely open in general. In [2] Cranston et al. proved that every
k-regular graph is antimagic if k ≥ 3 is odd. Note that 1-regular graphs are trivially
not antimagic. We have observed that a slight modi�cation of their argument also
works for even regular graphs, hence we prove the following.

Theorem 1. For k ≥ 2, every k-regular graph is antimagic.

It is worth mentioning the following conjecture of Liang [5]. Let G = (S, T ;E) be a
bipartite graph. A path P = {uv, vw} of length 2 with u,w ∈ S is called an S-link.

Conjecture 2. Let G = (S, T ;E) be a bipartite graph such that each node in S has
degree at most 4 and each node in T has degree at most 3. Then G has a matching
M and a family P of node-disjoint S-links such that every node v ∈ T of degree 3 is
incident to an edge in M ∪ (

⋃
P∈P P ).

Liang showed that if the conjecture holds then it implies that every 4-regular graph
is antimagic. The starting point of our investigations was proving Conjecture 2. As
Theorem 1 provides a more general result, we leave the proof of Conjecture 2 for a
forthcoming paper [1].
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2 Proof of Theorem 1

A trail in a graph G = (V,E) is an alternating sequence of nodes and edges v0, e1, v1,
. . . , et, vt such that ei is an edge connecting vi−1 and vi for i = 1, 2, . . . , t, and the
edges are all distinct (but there might be repetitions among the nodes). The trail is
open if v0 6= vt, and closed otherwise. The length of a trail is the number of edges
in it. A closed trail containing every edge of the graph is called an Eulerian trail.
It is well known that a graph has an Eulerian trail if and only if it is connected and
every node has even degree.

Lemma 3. Given a connected graph G = (V,E), let T = {v ∈ V : dE(v) is odd}. If
T 6= ∅, then E can be partitioned into |T |/2 open trails.

Proof. Note that |T | is even. Arrange the nodes of T into pairs in an arbitrary manner
and add a new edge between the members of every pair. Take an Eulerian trail of the
resulting graph and delete the new edges to get the |T |/2 open trails.

The main advantage of Lemma 3 is that the edge set of the graph can be partitioned
into open trails such that at most one trail starts at every node of V . Indeed, there
is a trail starting at v if and only if v has odd degree in G. This is how we see the
Helpful Lemma of [2].

Corollary 4 (Helpful Lemma of [2]). Given a bipartite graph G = (U,W ;E) with
no isolated nodes in U , E can be partitioned into subsets Eσ, T1, T2, . . . , Tl such that
dEσ(u) = 1 for every u ∈ U , Ti is an open trail for every i = 1, 2, . . . , l, and the
endpoints of Ti and Tj are di�erent for every i 6= j.

Proof. Take an arbitrary E ′ ⊆ E with the property dE′(u) = 1 for every u ∈ U . A
component of G − E ′ containing more than one node is called nontrivial. If there
exists a nontrivial component of G − E ′ that only contains even degree nodes then
let uw1 ∈ E − E ′ be an edge in this component with u ∈ U and w1 ∈ W , and let
uw2 ∈ E ′. Replace uw2 with uw1 in E ′. After this modi�cation, the component of
G − E ′ that contains u has an odd degree node, namely w1. Iterate this step until
every nontrivial component of G− E ′ has some odd degree nodes. Let Eσ = E ′ and
apply Lemma 3 to get the decomposition of E − Eσ into open trails.

In what follows we prove that regular graphs are antimagic: for sake of completeness
we include the odd regular case, too. We emphasize the di�erences from the proof
appearing in [2].

Proof of Theorem 1. Note that it su�ces to prove the theorem for connected regular
graphs. Let G = (V,E) be a connected k-regular graph and let v∗ ∈ V be an
arbitrary node. Denote the set of nodes at distance exactly i from v∗ by Vi and let
q denote the largest distance from v∗. We denote the edge-set of G[Vi] by Ei. Apply
Corollary 4 to the induced bipartite graph G[Vi−1, Vi] with U = Vi to get Eσ

i and
the trail decomposition of G[Vi−1, Vi] − Eσ

i for every i = 1, . . . , q. The edge set of
G[Vi−1, Vi]− Eσ

i is denoted by E ′i.
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Now we de�ne the antimagic labeling f of G as follows. We reserve the |Eq| smallest
labels for labeling Eq, the next |Eσ

q | smallest labels for labeling Eσ
q , the next |E ′q|

smallest labels for labeling E ′q, the next |Eq−1| smallest labels for labeling Eq−1, etc.
There is an important di�erence here between our approach and that of [2] as we
switched the order of labeling Eσ

i and E ′i, and we don't yet de�ne the labels, we only
reserve the intervals to label the edge sets. Next we prove a claim that tells us how
to label the edges in E ′i.

Claim 5. Assume that we have to label the edges of E ′i from interval s, s + 1, . . . , `
(where |E ′i| = `− s+ 1), and that we are given a trail decomposition of E ′i into open
trails. We can label E ′i so that successive labels (in a trail) incident to a node vi ∈ Vi
have sum at most s+`, and successive labels (in a trail) incident to a node vi−1 ∈ Vi−1
have sum at least s+ `.

Proof. Our proof of this claim is essentially the same as the proof in [2]: we merely
restate it for self-containedness. Let T be the trail decomposition of E ′i into open
trails. Take an arbitrary trail T = u0, e1, u1, . . . , et, ut of length t from T and consider
the following two cases (see Figure 1 for an illustration).

• Case A: If u0 ∈ Vi−1 then label e1, . . . , et by s, `, s+1, `−1, . . . in this order. In
this case the sum of 2 successive labels is s+ ` at a node in Vi, and it is s+ `+1
at a node in Vi−1.

• Case B: If u0 ∈ Vi then label e1, . . . , et by `, s, `− 1, s+ 1, . . . in this order. In
this case the sum of 2 successive labels is s+ `−1 at a node in Vi, and it is s+ `
at a node in Vi−1.

We prove by induction on |T |. The proof is �nished by the following cases.

1. If T contains a trail of even length, then let T be such a trail (and again t denotes
the length of T ). If the endpoints of T fall in Vi−1 then apply Case A. On the
other hand, if the endpoints of T fall in Vi then apply Case B. In both cases
we use t

2
labels from the lower end of the interval, and t

2
labels from the upper

end, therefore we can label the edges of the trails in T −T from the (remaining)
interval s+ t

2
, s+ t

2
+1, . . . , `− t

2
, so that the lower bound s+ t

2
+ `− t

2
= s+ `

holds for the sum of two successive labels at every vi−1 ∈ Vi−1, and the same
upper bound holds at each node vi ∈ Vi.

2. Every trail in T has odd length. If T contains only one trail then label it using
either of the two cases above and we are done. Otherwise let T1 and T2 be two
trails from T, and let ti be the length of Ti for both i = 1, 2. Label �rst the edges
of T1 using Case A (starting at the endpoint of T1 that lies in Vi−1). Note that the
remaining labels form the interval s+ t1+1

2
, . . . , `− t1−1

2
. Next label the edges of T2

using Case B (starting at the endpoint of T2 that lies in Vi). Note that the sum of
successive labels in the trail T2 becomes s+ t1+1

2
+(`− t1−1

2
)−1 = s+` at a node

in Vi, and it is s+
t1+1
2

+(`− t1−1
2

) = s+`+1 at a node in Vi−1, which is �ne for us.
Finally, the remaining labels form the interval s+ t1+1

2
+ t2−1

2
, . . . , `− t1−1

2
− t2+1

2
,
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Case A Case B

u1

u2

u3

u0 u4

u5
u0 u2 u4Vi

Vi−1

` − 2` − 1`

s s + 1s + 2s + 1s

` − 1

u1 u3 u5

`

Vi−1

Vi

Figure 1: An illustration for labeling trails.

therefore we can label the edges of the trails in T −{T1, T2} from the remaining
interval so that the lower bound s+ t1+1

2
+ t2−1

2
+ `− t1−1

2
− t2+1

2
= s+ ` holds

for the sum of two successive labels at every node of Vi−1, and the same upper
bound holds at every node of Vi.

Now we specify how the labels are determined to make sure f(E(u)) 6= f(E(v))
for every u 6= v. We label the edges of every Ei arbitrarily from their dedicated
intervals. Label the edges of every E ′i in the manner described by Claim 5. For any
node v ∈ Vi with i > 0, let σ(v) denote the unique edge of Eσ

i incident to v. Let
p(v) = f(E(v))−f(σ(v)) for every v ∈ V −v∗. We label the edges in Eσ

q , E
σ
q−1, . . . , E

σ
1

as in [2]: if we already labeled Eσ
q , E

σ
q−1, . . . , E

σ
i+1 then p(vi) is already determined

for every vi ∈ Vi. So we order the nodes of Vi in an increasing order according to
their p-value and assign the label to their σ edge in this order. This ensures that
f(E(u)) 6= f(E(v)) for an arbitrary pair u, v ∈ Vi.
We have fully described the labeling procedure. This labeling scheme ensures that

f(E(vi)) < f(E(vj)) if vi ∈ Vi, vj ∈ Vj and i ≥ j + 2 since G is regular and the edges
in E(vj) get larger labels than those in E(vi). Similarly, f(E(v∗)) > f(E(v)) for every
v ∈ V − v∗ for the same reason. It is only left is to show that f(E(vi)) 6= f(E(vi−1))
for arbitrary vi ∈ Vi, vi−1 ∈ Vi−1 and i ≥ 2.

Claim 6. For arbitrary vi ∈ Vi, vi−1 ∈ Vi−1 and i ≥ 2 we have

(i) p(vi) ≤ k−2
2
(s+ `) + ` and p(vi−1) ≥ k−2

2
(s+ `) + s, if k is even, and

(ii) p(vi) ≤ k−1
2
(s+ `) and p(vi−1) ≥ k−1

2
(s+ `), if k is odd.

Proof. Assume �rst that k is even. In this case p(v) is the sum of an odd number of
labels. We pair up all but one of these labels using the trail decomposition of E ′i to
get the bounds needed.
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1. Take a node vi ∈ Vi. Note that f(e) < s for every e ∈ E(vi)−E ′i. Let t = dE′i(vi).

(a) If t is even then
∑

e∈E′i∩E(vi)
f(e) ≤ t

2
(s + `) by Claim 5, giving p(vi) ≤

t
2
(s+ `) + (k − 1− t)s ≤ k−2

2
(s+ `) + `.

(b) If t is odd then
∑

e∈E′i∩E(vi)
f(e) ≤ t−1

2
(s+ `)+ ` by Claim 5, giving p(vi) ≤

t−1
2
(s+ `) + `+ (k − 1− t)s ≤ k−2

2
(s+ `) + `.

2. Now take a node vi−1 ∈ Vi−1. Note that f(e) > ` for every e ∈ E(vi−1) − E ′i.
Let again t = dE′i(vi−1).

(a) If t is even then
∑

e∈E′i∩E(vi−1)
f(e) ≥ t

2
(s+ `) by Claim 5, giving p(vi−1) ≥

t
2
(s+ `) + (k − 1− t)` ≥ k−2

2
(s+ `) + s.

(b) If t is odd then
∑

e∈E′i∩E(vi−1)
f(e) ≥ t−1

2
(s + `) + s by Claim 5, giving

p(vi−1) ≥ t−1
2
(s+ `) + s+ (k − 1− t)` ≥ k−2

2
(s+ `) + s.

This concludes the proof of (i).

Although the proof of (ii) can be found in [2], we also present it here to make the
paper self contained. The proof is very similar to the even case. So assume that k is
odd. In this case p(v) is the sum of an even number of labels. We pair up these labels
using the trail decomposition of E ′i to get the bounds needed.

1. Take a node vi ∈ Vi. Note that f(e) < s for every e ∈ E(vi)−E ′i. Let t = dE′i(vi).

(a) If t is even then
∑

e∈E′i∩E(vi)
f(e) ≤ t

2
(s + `) by Claim 5, giving p(vi) ≤

t
2
(s+ `) + (k − 1− t)s ≤ k−1

2
(s+ `).

(b) If t is odd then
∑

e∈E′i∩E(vi)
f(e) ≤ t−1

2
(s+ `)+ ` by Claim 5, giving p(vi) ≤

t−1
2
(s+ `) + `+ (k − 1− t)s ≤ k−1

2
(s+ `).

2. Now take a node vi−1 ∈ Vi−1. Note that f(e) > ` for every e ∈ E(vi−1) − E ′i.
Let again t = dE′i(vi−1).

(a) If t is even then
∑

e∈E′i∩E(vi−1)
f(e) ≥ t

2
(s+ `) by Claim 5, giving p(vi−1) ≥

t
2
(s+ `) + (k − 1− t)` ≥ k−1

2
(s+ `).

(b) If t is odd then
∑

e∈E′i∩E(vi−1)
f(e) ≥ t−1

2
(s + `) + s by Claim 5, giving

p(vi−1) ≥ t−1
2
(s+ `) + s+ (k − 1− t)` ≥ k−1

2
(s+ `).

This concludes the proof of (ii), and we are done.

The assignment of the labels implies f(σ(vi)) < s and f(σ(vi−1)) > ` for vi ∈ Vi
and vi−1 ∈ Vi−1. Claim 6 yields f(E(vi)) < f(E(vi−1)), �nishing the proof of Theorem
1.

Remark 7. Observe that the proof of Theorem 1 does not really use the regularity of
the graph, it merely relies on the fact that the degree of a node vi ∈ Vi is not smaller
than that of a node vj ∈ Vj where i < j. Hence the following result immediately
follows.
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Theorem 8. Assume that a connected graph G = (V,E) (|V | ≥ 3) has a node v∗ ∈ V
of maximum degree such that dE(vi) ≥ dE(vj) whenever vi ∈ Vi, vj ∈ Vj and i < j,
where V` denotes the set of nodes at distance exactly ` from v∗. Then G is antimagic.
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Erratum

Recently, Chang, Liang, Pan and Zhu observed that the proof of Theorem 1 is in-
correct: in the proof of Claim 6 (page 5), Case 2 assumes that f(e) > ` for every
e ∈ E(vi−1) − E ′i. However, this assumption does not hold for edges in Eσ

i , thus the
subsequent calculations are not valid. The aim of the present erratum is to �x the
proof. It is important to mention that at the same time when the original paper
appeared, regular graphs were proved to be antimagic by Chan et al. [2]. However,
as our paper received several citations we felt that we should �x the problem ap-
pearing in the proof. Although the high level idea remained the same, the proof has
changed signi�cantly as we are relying on further results from matching theory (see
the following subsection).
Cranston et al. [3] veri�ed that regular graphs of odd degree are antimagic. In [1],

the authors veri�ed the conjecture for the case k = 4 by introducing a restricted path
packing problem in bipartite graphs. As the case k = 2 is trivial, we concentrate on
k ≥ 6 and k being even.
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Tools

Let us recall the following folklore result from matching theory.

Theorem 9. In a bipartite graph there exists a matching that covers every node of
maximum degree.

We will also build upon the following theorem.

Theorem 10. Let G = (S, T ;E) be a bipartite graph and T = T1 ∪ T2 be a partition
of T . For a set X ⊆ S let Ni(X) denote the neighbours of X in Ti (i = 1, 2). If
d|N1(X)|/2e+ |N2(X)| ≥ |X| for all X ⊆ S, then there exists a matching covering S
that covers at most d|T1|/2e nodes from T1.

Proof. Extend the graph by adding a set S ′ of new nodes to S with |S ′| = b|T1|/2c
together with a complete bipartite graph between T1 and S ′. We claim that the
resulting bipartite graph has a matching covering S∪S ′. This would prove the theorem
as deleting the newly added edges from such a matching results in a matching covering
S that covers at most |T1| − b|T1|/2c = d|T1|/2e nodes of T1.
By Hall's theorem it is enough to show that for every set Y ⊆ S ∪S ′, |N(Y )| ≥ |Y |

holds where N(Y ) denote the neighbours of Y . It su�ces to verify the inequality for
Y 's satisfying either Y ⊆ S or S ′ ⊆ Y . Indeed, if Y ∩ S ′ 6= ∅ then for Y ′ = Y ∪ S ′ we
have N(Y ′) = N(Y ) and |Y ′| ≥ |Y |, thus giving a more strict constraint.
If Y ⊆ S, then the inequality holds by the assumptions of the theorem. If S ′ ⊆ Y ,

then Y = S ′ ∪ X for some X ⊆ S, and |N(Y )| = |N(S ′ ∪ X)| = |T1| + |N2(X)| =
|S ′|+d|T1|/2e+|N2(X)| ≥ |S ′|+d|N1(X)|/2e+|N2(X)| ≥ |S ′|+|X| = |Y |, concluding
the proof.

Another tool that our proof relies on is a theorem that appeared in [Corollary 9][1]
in a more general form (formulated using hypergraph terminology).

Theorem 11. Let G = (U,W ;E) be a bipartite graph and k be a positive even integer.
Assume that each node in W has degree k − 1 and dG(u) ≤ k for every u ∈ U . Then
there exists a family of pairwise node-disjoint stars (w1, U1;F1), . . . , (wq, Uq;Fq) such
that wi ∈ W , |Ui| is either even or k − 1, and each node u ∈ U of degree k is covered
by one of the stars.

Let G = (U,W ;E) be a bipartite graph. A path P = {u′w,wu′′} of length 2
with u′, u′′ ∈ U is called a U-link. The center node of the U -link is w. Based on
Theorem 11, we prove the following.

Theorem 12. Let G = (U,W ;E) be a bipartite graph and k be a positive even integer.
Assume that each node in U has degree at most k and each node in W has degree at
most k − 1. Then G has a matching M and a family P of node-disjoint U-links with
center nodes having degree k−1 such that every node w ∈ W of degree k−1 is incident
to an edge in M ∪ (

⋃
P∈P P ).

EGRES Quick-Proof No. 2015-03
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Proof. Observe that it su�ces to verify the theorem for the special case when each
node in W has degree exactly k− 1 as we can simply delete nodes of degree less than
k − 1. Let U ′ ⊆ U denote the set of nodes having degree k. Consider a family of
stars provided by Theorem 11. The union of the edges of the stars is denoted by
F =

⋃q
i=1 Fi. Let W

′ be the set of nodes in W not covered by F . As dE−F (u) ≤ k− 1
for each u ∈ U , W ′ can be covered by a matching M disjoint from F , by Theorem 9.
Now we trim each star either into a matching edge or into an U -link. If M covers

at most one node from Ui, then keep only one edge wiu ∈ Fi where u is not covered
by M (such an edge exists as |Ui| ≥ 2). If M covers at least two nodes from Ui, then
keep two edges wiu

′, wiu
′′ ∈ Fi where both u′ and u′′ are covered by M . This way we

get a matching and a family of U -links whose union together covers W .

As a consequence, we can give a special partition of the edges of a bipartite graph.

Theorem 13. Let G = (U,W ;E) be a bipartite graph and k be a positive even integer.
Assume that 1 ≤ dG(u) ≤ k for each node u ∈ U and each node in W has degree
at most k − 1. Then E can be partitioned into three pairwise disjoint parts E =
E ′ ∪ Eσ ∪ EL satisfying the following conditions:

(i) each node in U has degree one in Eσ, that is, Eσ is the union of pairwise node-
disjoint stars with center nodes in W together covering U ,

(ii) EL is the union of pairwise node-disjoint U-links with center nodes having degree
k − 1 in G,

(iii) Eσ ∪ EL covers each node in W of degree k − 1.

Proof. Take a matching M and a family P of node-disjoint U -links provided by The-
orem 12. Add M to Eσ, and for each node u ∈ U not covered by M ∪ (

⋃
P∈P P ) add

an arbitrary edge incident on u to Eσ. Let EL consist of the edges of those U -links in
P whose center nodes are not covered by Eσ. Finally, set E ′ = E \ (Eσ ∪ EL). The
partition E = E ′ ∪Eσ ∪EL thus obtained satis�es the conditions of the theorem.

Recall the de�nition of an open or closed trail v0, e1, v1, . . . , et, vt. We will say that
e1 and et are the terminal edges of the trail, while v0 and vt are the terminal

nodes. Besides Lemma 3, we will use the following.

Lemma 14. If each node of a connected graph G = (V,E) has even degree, then E
is a closed trail.

Proof. A closed trail containing every edge of the graph is basically an Eulerian trail.
It is well known that a graph has an Eulerian trail if and only if it is connected and
every node has even degree.

The main advantage of Lemmas 3 and 14 is that the edge set of the graph can
be partitioned into open and closed trails such that the closed trails form connected
components of the graph, while at most one open trail starts at every node of V .

Corollary 15. Given a bipartite graph G = (S, T ;E) with no isolated nodes, E can
be partitioned into trails T1, . . . , T` such that Ti forms a connected component of G if
it is closed, and the endpoints of odd trails Ti and Tj are di�erent if i 6= j.

EGRES Quick-Proof No. 2015-03
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Proof of Theorem 1

Recall that the odd regular case was settled in [3], the case k = 2 is trivial, and the
case k = 4 was solved in [1]. Hence we assume that k is even and is at least 6.
It su�ces to prove the theorem for connected regular graphs. Let G = (V,E) be

a connected k-regular graph and let v∗ ∈ V be an arbitrary node. Denote the set of
nodes at distance exactly i from v∗ by Vi and let q denote the largest distance from
v∗. We denote the edge-set of G[Vi] by Ei. Apply Theorem 13 and Corollary 15 to
the induced bipartite graph G[Vi−1, Vi] with W = Vi−1 and U = Vi to get a partition
E ′i, E

σ
i and EL

i together with a trail decomposition of E ′i for every i = 1, . . . , q. Note
that the BFS tree we started with makes sure that there are no isolated nodes in U
and the degree of a node w ∈ W is at most k − 1 in G[Vi−1, Vi].
We call a connected component C of E ′i critical, if C is (k − 2)-regular and every

node in C ∩ Vi is covered by EL
i . Note that a critical component forms a closed trail.

Claim 16. We can assign a Vi-link {u′v, vu′′} to each critical component C with
u′ ∈ C ∩ Vi in such a way that the following holds.

1. Di�erent critical components get di�erent Vi-links.

2. No open trail ends in the center nodes of two di�erent Vi-links assigned to critical
components.

3. If no denotes the number of odd open trails in E ′i, then at most dno
2
e of the

odd open trails end in the set of center nodes of Vi-links assigned to critical
components.

Proof. We construct a bipartite graph as follows. One of the color classes, denoted by
S, corresponds to the critical components of E ′i. The other color class, denoted by T ,
corresponds to the Vi-links of E

L
i modulo open trails, that is, if the center nodes of two

Vi-links form the terminal nodes of the same open trail then they are represented by
the same node in the bipartite graph. We add an edge between a node corresponding
to a critical component C and a node representing a Vi-link {u′v, vu′′} if u′ ∈ C.
Let T = T1 ∪ T2 where T1 corresponds to those Vi-links whose center nodes are

terminal nodes of odd open trails. Let X be a subset of the nodes representing the
critical components. We claim that the assumption of Theorem 10 is satis�ed, that
is, d|N1(X)|2e+ |N2(X)| ≥ |X| holds.
Recall that a critical component C corresponds to (k − 2)-regular subgraphs in

which every node in C ∩ Vi is covered by a Vi-link. As k − 2 ≥ 4 and a Vi-link uses
two edges, there are at least 2|X| many Vi-links incident to the critical components
in X. Due to the construction of the bipartite graph, some of these Vi-links might
be represented by the same node in T (if the center nodes of two Vi-links form the
terminal nodes of the same open trail). Let m1 denote the number of Vi-links whose
center node is the terminal node of an odd open trail, and let m2 be the number of the
remaining ones. Then d|N1(X)|/2e+ |N2(X)| ≥ dm1/2e+m2/2 ≥ (m1+m2)/2 ≥ |X|
as requested.
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s ℓ+ a

ℓ⌈ s+ℓ
2 ⌉

⌈ s+ℓ
2 ⌉+ ni − 1

ℓ+ a− ni + 1

ℓ+ ni

intervals for E′
i

interval for non-deficient Vi-links

intervals for deficient Vi-links

Figure 2: Assigning the intervals to E ′i and E
L
i .

By applying Theorem 10 to the bipartite graph constructed above, we get a match-
ing which corresponds to an assignment satisfying the conditions of the theorem,
concluding the proof.

Vi-links assigned to critical components are called de�cient, and we will refer to
their center nodes also as de�cient nodes. The node u′ and edge u′v appearing in
Claim 16 are called the core node and the core edge of the critical component C,
respectively.
The starting node of a closed trail is de�ned as follows. If the trail is a critical

component, then the starting node is set to be the core node of the component. If the
trail is not a critical component and has a node v ∈ Vi with dELi (v) = 0, then set the
starting node to be such a node. Otherwise, set the starting node to be an arbitrary
node of the trail with degree at most k − 3.
In what follows, we state the algorithm that provides a labeling of the graph. We

reserve the |Eq| smallest labels for labeling Eq, the next |E ′q|+ |EL
q | smallest labels for

labeling E ′q∪EL
q , the next |Eσ

q | smallest labels for labeling Eσ
q , the next |Eq−1| smallest

labels for labeling Eq−1, etc. We assume that we are given a trail decomposition of E ′i
into a set T of trails together with Vi-links assigned to critical trails as in Claim 16
for i = 1, . . . , q. We label the edge-sets in order

Eq → E ′q → EL
q → Eσ

q → Eq−1 → · · · → Eσ
2 → E1 → E ′1 → EL

1 → Eσ
1 .

For i > 0, assume that |EL
i | = a, the number of critical components in E ′i is

ni, and that the edges of E ′i ∪ EL
i are labeled using the interval [s, ` + a] (that is,

|E ′i| = `−s+1). We will use the intervals [d s+`
2
e, d s+`

2
e+ni−1]∪ [`+a−ni+1, `+a]

for labeling the de�cient Vi-links of E
L
i . The edges of the non-de�cient Vi-links are

labeled by using labels from [` + ni + 1, ` + a − ni] (note that a ≥ 2ni). The edges
of the trails appearing in the decomposition of E ′i are labeled by using labels from
[s, d s+`

2
e − 1] ∪ [d s+`

2
e+ ni, `+ ni] (see Figure 2).

Step 1. Labeling the edges in Ei.
We label the edges of Ei arbitrarily from its dedicated interval.

Step 2. Labeling trails.
We initialize I1 = {s, s + 1, . . . , d s+`

2
e − 1} and I2 = {d s+`

2
e + ni, d s+`2 e + ni +

1, . . . , ` + ni}. Notice that |I1| ≤ |I2| ≤ |I1| + 1 holds for the initial setup. We will
use the subroutine LabelOneTrail (see Algorithm 1) for labeling one trail.
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Algorithm 1: LabelOneTrail(v0, e1, v1, . . . , et, vt)

Input : A trail T = v0, e1, v1, . . . , et, vt with a designated starting node v0.
Output: A labeling of T .

1 Assume that I1 = {a1, a1 + 1, . . . , b1} and I2 = {a2, a2 + 1, . . . , b2} are the
available intervals for labeling.

2 if v0 ∈ Vi−1 then
3 label e1, e2, . . . , et with the labels a1, b2, a1 + 1, b2 − 1, . . . ;
4 else

5 label e1, e2, . . . , et with the labels b2, a1, b2 − 1, a1 + 1, . . . ;
6 end

7 Remove the used labels from I1 and I2.

When labeling the trails, we want to make sure that de�cient nodes do not get a
small label. This means the following: if v is de�cient then the trail T that ends in
v will be labeled such that v is the �nal node, and not the starting one, thus the
terminal edge of T at v will get a label from I2. The labeling of the trails is done as
follows.
Step 2a. While there is a not yet labeled closed trail T = v0, e1, v1, . . . , e2t, v2t with

starting node v0, label it by calling LabelOneTrail(v0, e1, v1, . . . , e2t, v2t). Notice that
|I1| ≤ |I2| ≤ |I1|+ 1 is maintained after this call.
Step 2b. While there exists a not yet labeled open even trail, take one such trail

T = v0, e1, v1, . . . , e2t, v2t. By Claim 16, we can assume that v0 is not de�cient. Label T
by calling LabelOneTrail(v0, e1, v1, . . . , e2t, v2t). Again notice that |I1| ≤ |I2| ≤ |I1|+ 1
is maintained after this call.
Step 2c. If all even trails are labeled then create pairs of the odd trails in an

arbitrary manner with the only restriction that at most one terminal node of the
members of the pair can be de�cient. This can be done since nn ≥ nd − 1 by Claim
16, where nd denotes the number of odd open trails having a de�cient terminal node,
while nn denotes the number of odd open trails having no de�cient terminal node.
If the number of odd trails is odd then one trail will have no pair, and if nd =
nn + 1 then this trail can have a de�cient terminal node. Label �rst the pairs as
follows. Let T = v0, e1, v1, . . . , e2t+1, v2t+1 and T ′ = v′0, e

′
1, v
′
1, . . . , e

′
2t′+1, v

′
2t′+1 be an

arbitrary pair with v0 ∈ Vi and v′0 ∈ Vi−1 where we assume that v′0 is not de�cient
(that is, v2t+1 might be de�cient). Call �rst LabelOneTrail(v0, e1, v1, . . . , e2t+1, v2t+1)
and next LabelOneTrail(v′0, e

′
1, v
′
1, . . . , e

′
2t′+1, v

′
2t′+1) for labeling this pair. Notice that

|I1| ≤ |I2| ≤ |I1| + 1 is maintained after these two calls. Finally, if there is a single
trail T = v0, e1, v1, . . . , e2t+1, v2t+1 that is not yet labeled then label it by calling
LabelOneTrail(v0, e1, v1, . . . , e2t+1, v2t+1) where v0 ∈ Vi is assumed (and v2t+1 is either
de�cient or non-de�cient).

Step 3. Labeling de�cient Vi-links.
Recall that de�cient links are labeled using the intervals [d s+`

2
e, d s+`

2
e+ ni − 1] ∪ [`+

a− ni + 1, `+ a]. In an arbitrary order, take the next de�cient Vi-link {u′v, vu′′} and
assume that the core edge is u′v. Label u′v with the smallest available label, and vu′′
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with the largest available label. This scheme makes sure that the sum of the labels
on the link is d s+`

2
e+ `+ a.

Step 4. Labeling non-de�cient Vi-links.
The edges of the non-de�cient Vi-links are labeled by using labels from [`+ni+1, `+
a − ni] (note that a ≥ 2ni). In an arbitrary order, take the next non-de�cient Vi-
link {u′v, vu′′} and label u′v with the smallest available label, and vu′′ by the largest
available label. This scheme makes sure that the sum of the labels on the link is
2`+ a+ 1.

Step 5. Labeling the edges in Eσ
i .

For any node v ∈ Vi (i > 0), let σ(v) denote the unique edge of Eσ
i incident to v and let

p(v) = f(E(v))−f(σ(v)). Note that we have already labeledEq, E ′q, EL
q , E

σ
q , . . . , Ei, E

′
i,

EL
i , hence p(vi) is already determined for every vi ∈ Vi. So we order the nodes of Vi

in an increasing order according to their p-value and assign the label to their σ edge
in this order. This ensures that f(E(u)) 6= f(E(v)) for an arbitrary pair u, v ∈ Vi.
We have fully described the labeling procedure. This labeling scheme ensures that

f(E(vi)) < f(E(vj)) if vi ∈ Vi, vj ∈ Vj and i ≥ j + 2 since G is regular and the edges
in E(vj) get larger labels than those in E(vi). Similarly, f(E(v∗)) > f(E(v)) for every
v ∈ V − v∗ for the same reason. It is only left to show that f(E(vi)) 6= f(E(vi−1)) for
arbitrary vi ∈ Vi, vi−1 ∈ Vi−1 and i ≥ 2.
To prove this, �rst we collect the observations that are true for this labeling and

will be used later. For the subsequent proofs we introduce the following notation. If
v ∈ Vi−1 ∪ Vi then let pL(v) =

∑
e∈ELi ∩E(v) f(e), p

′(v) =
∑

e∈E′i∩E(v) f(e) and p(v) =∑
e∈E(v)−σ(v) f(e).

Observation 17. Let v ∈ Vi−1.

(a) Successive labels on any trail incident to v have sum at least s+ `+ ni.

(b) If dE′i(v) is odd then f(e) ≥ s+ni for the edge e ∈ E(v)∩E ′i that is the terminal
edge of a trail. (This holds because we �rst labeled the closed trails, that includes
all the critical trails.)

(c) If v is de�cient (in which case dE′i(v) = k − 3) then f(e) ≥ s+`
2

+ ni for the edge
e ∈ E(v) ∩ E ′i that is the terminal edge of a trail.

Observation 18. Let v ∈ Vi.

(a) Successive labels on any trail incident to v have sum at most s+ `+ ni.

(b) If v is the starting node of a closed trail then the sum of the labels on the terminal
edges of the trail is at most s+ `+ ni +

`−s
2
.

(c) If v is a core node then pL(v) ≤ s+`
2

+ ni.

Lemma 19. For arbitrary v ∈ Vi−1 and i ≥ 2 we have p(v) ≥ k−2
2
(s+ `+ ni) + `+ a.
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Proof. The idea of the proof is the following. Since p(v) =
∑

e∈E(v)−σ(v) f(e) is the
sum of k− 1 edge-labels, we will pair the edges in this sum (except for one) such that
the sum of the labels in each pair is ≥ s + ` + ni, while the bound f(e) ≥ ` + a will
be applied for the remaining edge that does not have a pair. This idea will work in
almost all of the cases below.
The edges in E ′i that are subsequent on a trail are naturally paired with each other

by Observation 17a. Furthermore, if two edges both get a label ≥ `+ a then they can
be paired with each other.
Notice that dE′i(v) ≤ k − 2 holds for v ∈ Vi−1.
Case 1: There is no Vi-link at v. Notice that the edges in E(v) − σ(v) either fall

into E ′i or get a label ≥ l+ a. If dE′i(v) = k− 2 then our rule for choosing the starting
node of a closed trail will not choose v, that is, all edges of Ei ∩ E(v) are paired by
the trail. So assume that dE′i(v) < k − 2. In this case at least two edges get a label
≥ l+ a. If dE′i(v) is odd then let e be the only edge at v that is not paired by a trail:
we will pair it with an edge that has label ≥ `+ a and apply the trivial lower bound
f(e) ≥ s. If dE′i(v) is even then it is at most k − 4, so even if v is the starting node
of a closed trail, the two edges e, e′ that are not paired by the trail (terminal edges)
can be paired by edges having labels ≥ `+ a.
Case 2: There is a Vi-link at v. In this case dE′i(v) = k−3. If v is not de�cient then

pL(v) = 2l+a+1 and p′(v) ≥ s+ni+
k−4
2
(s+l+ni), by Observation 17b. On the other

hand, if v is de�cient then pL(v) = d s+`
2
e+ `+a and p′(v) ≥ s+`

2
+ni+

k−4
2
(s+ `+ni)

by Observation 17c, �nishing the proof.

Lemma 20. For arbitrary v ∈ Vi and i ≥ 1, we have p(v) ≤ k−2
2
(s+ `+ ni) + `+ a.

Proof. The idea of the proof is the the same as it was in Lemma 19 with the only
exception that we aim for an upper bound. That is, we pair all but one of the k − 1
edges that appear in the formula for p(v) such that the sum of the labels in each pair
is ≤ s+ l+ ni, while the trivial bound f(e) ≤ `+ a will be applied for the remaining
edge that does not have a pair.
The edges in E ′i that are subsequent on a trail are naturally paired with each other

by Observation 18a. Furthermore, if two edges both get a label less than s then they
can be paired with each other.
Case 1: There is no Vi-link at v. Notice that the edges in E(v) − σ(v) either fall

into E ′i or get a label < s. If dE′i(v) is odd then there is nothing to do: we apply
f(e) ≤ ` + a for the edge e ∈ E(v) that is the terminal edge of a trail, and the
remaining edges are either paired by the trails or have label < s. If dE′i(v) is even
then it is at most k− 2 and there is at least one edge h ∈ E(v) having label < s. If v
is not the starting node of a trail then all the edges at v are either paired by the trails
or have label < s. If v happens to be the starting node of a closed trail then let e and
e′ be the �rst and the last edge of the trail and observe that f(e) + f(h) ≤ s+ `+ ni
while we can apply the trivial bound f(e′) ≤ `+ a.
Case 2: There is a Vi-link at v. If v is a core node then apply Observation 18c to

get pL(v) ≤ s+`
2

+ ni and Observation 18b to get p′(v) ≤ k−2
2
(s+ `+ ni) +

l−s
2

giving
p(v) ≤ k−2

2
(s+ `+ ni) + `+ ni ≤ k−2

2
(s+ `+ ni) + `+ a. If v is not a core node then

the trivial bound pL(v) ≤ ` + a can be applied for the Vi-link, since v is either not a
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starting node in a trail (in which case all edges in E ′i ∩ E(v) are paired by the trails
and f(e) < s holds for every other edge e ∈ E(v) − σ(v)). On the other hand if v is
the starting node of a trail then either dE′i(v) is odd and the terminal edge of the trail
can be paired with an edge with label < s, or dE′i(v) is even, in which case there are
at least 2 edges with label < s: pair those with the terminal edges of the trail.

The fact that f(σ(vi)) < f(σ(vi−1) and Lemmas 19 and 20 together yield f(E(vi)) <
f(E(vi−1)), �nishing the proof of Theorem 1.
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