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PPAD-completeness of polyhedral versions of

Sperner's Lemma

Tamás Király and Júlia Pap

Abstract

We prove that some polyhedral versions of Sperner's Lemma, where the

colouring is explicitly given in the input, are PPAD-complete.

Sperner's Lemma on the existence of a multicoloured triangle in a suitable colouring
of a triangulation has many versions and generalizations. The following is a version
that concerns colourings of an n-dimensional polytope, see [5]. Given a colouring of
the vertices of a polytope by n colours, a facet is multicoloured if it contains vertices
of each colour.

Theorem 1. Let P be an n-dimensional polytope, with a simplex facet F0. Suppose

we have a colouring of the vertices of P with n colours such that F0 is multicoloured.

Then there is another multicoloured facet.

This theorem leads naturally to a computational problem where the task is to �nd
a multicoloured facet di�erent from F0.

Polytopal Sperner

Input: vectors vi ∈ Qn (i = 1, . . . ,m) whose convex hull is a full-dimensional
polytope P ; a colouring of the vertices by n colours; a multicoloured simplex
facet F0 of P .
Output: n a�ne independent vectors vi1 , . . . , vin with di�erent colours which lie
on a facet of P di�erent from F0.

The complexity class PPAD was introduced by Papadimitriou [6], who proved
among other results that a computational version of 3D Sperner's lemma is PPAD-
complete. Later Chen and Deng [1] proved that the 2 dimensional problem is also
PPAD-complete. The input of these computational versions is a polynomial algorithm
that computes a legal colouring, while the number of vertices to be coloured is expo-
nential in the input size. This is conceptually di�erent from Polytopal Sperner,
where the input explicitly contains the vertices and the colouring. In Polytopal

Sperner the di�culty lies not in the large number of vertices but in that the struc-
ture is encoded as a polytope. We note that in �xed dimension Polytopal Sperner
is solvable in polynomial time since then the number of facets is polynomial in the
number of vertices.
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In this note we prove that Polytopal Sperner is PPAD-complete. Our proof of
PPAD-hardness is essentially the same as the proof by Kintali [3] of PPAD-hardness
of the computational problem Scarf which is related to Scarf's Lemma. Before
describing the details, let us show that the problem is in PPAD.

Theorem 2. Polytopal Sperner is in PPAD.

Proof. We reduce it to the problem End Of The Line, see e.g. [2]. We can compute
in polynomial time a perturbation of the vertices in the input such that every facet
becomes a simplex, and every facet (as a vertex set) is a subset of an original facet.
Assume that [n] is the set of colours. We de�ne a digraph whose nodes are the facets
that contain all colours in [n−1] (formally, we may associate a node to each n-tuple of
vertices, all other nodes being isolated). Each (n− 2)-dimensinal face with all colours
in [n − 1] is in exactly two facets, and we can say that one of them is on the left
side of the face and the other is on the right side, with respect to a �xed orientation.
For each such (n − 2)-dimensinal face, the digraph contains an arc from the node
corresponding to the facet on the left side to the node corresponding to the facet on
the right side.
The obtained digraph has in-degree and out-degree at most 1 in every node, and

the neighbours of a node can be computed in polynomial time. A node has degree 1
if and only if the corresponding facet is multicoloured. We may assume w.l.o.g. that
the node corresponding to F0 is a source, so the solution of End Of The Line for
this digraph corresponds to �nding a multicoloured facet di�erent from F0.

In order to prove PPAD-completeness, we use a problem introduced in [5] that is
polynomially reducible to Polytopal Sperner. The following theorem in [5] is ob-
tained from Theorem 1 by taking a bounded polar of a polyhedron with n independent
extreme rays, and adding a cut that cuts o� the vertex corresponding to the original
facet at in�nity.

Theorem 3. Let P be an n-dimensional pointed polyhedron whose characteristic cone

is generated by n linearly independent vectors. If we colour the facets of the polyhedron

by n colours such that facets containing the i-th extreme direction do not get colour i,
then there is a multicoloured vertex.

The corresponding computational problem, which we call Extreme Direction

Sperner, is polynomially reducible to Polytopal Sperner because a bounded
polar and a cut that cuts o� a certain simplicial vertex can be computed in polynomial
time.

Extreme Direction Sperner

Input: matrix A ∈ Qm×n and vector b ∈ Qm for which P = {x : Ax ≤ b} is a
pointed polyhedron whose characteristic cone is generated by n linearly indepen-
dent vectors; a colouring of the facets by n colours such that facets containing
the i-th extreme direction do not get colour i.
Output: a multicoloured vertex of P .
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Theorem 4. Extreme Direction Sperner is PPAD-complete.

Proof. The proof is analogous to the proof of PPAD-completeness of Scarf by Kin-
tali [3], who proves that the problem 3-Strong Kernel de�ned below is PPAD-
complete, and reduces it to Scarf. A digraph D = (V,E) is clique-acyclic if for
every directed cycle either the reverse of one of the arcs is also in E, or there are two
nodes of the cycle that are not connected by an arc in E. A strong fractional kernel of
D is a vector x : V → R+ such that x(K) ≤ 1 for every clique K, and for each node
v there is at least one clique K in the out-neighbourhood of v such that x(K) = 1.

3-Strong Kernel

Input: A clique-acyclic digraph D = (V,E) with maximum clique size at most 3
Output: A strong fractional kernel of D.

To reduce 3-Strong Kernel to Extreme Direction Sperner, let n = |V |,
and let us consider the polyhedron

P = {x ∈ Rn : x(K) ≤ 1 for every clique K of D}.

Since every clique has size at most 3, the number of cliques is polynomial in n. The
extreme directions of P are −ej (j ∈ [n]). As a set of colours, we use the nodes of V .
Let the colour of the facet x(K) = 1 be a source node ofK. This colouring satis�es the
criterion in Theorem 3, so we have a valid input for Extreme Direction Sperner.
Let x∗ be a mulitcoloured vertex. For each node v ∈ V , there is a clique K such that
the facet x(K) = 1 contains x∗ and has colour v, hence v is a source of K, i.e. K is
in the out-neighbourhood of v. This means that x∗ is a strong fractional kernel.

Corollary 5. Polytopal Sperner is PPAD-complete.

Proof. As we have seen, Extreme Direction Sperner is polynomially reducible
to Polytopal Sperner.
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