NP-hardness of the Clar number in general plane graphs

Attila Bernáth and Erika Renáta Kovács

Abstract

We prove that calculating the Clar number in general plane graphs is NPhard.

1 Problem Definition

Let $G=(V, E)$ denote a 2-connected planar graph which has a perfect matching. For a planar embedding of G and a perfect matching M of G let F_{M} denote the set of those faces which alternate with respect to M. Note that faces in F_{M} are even. A pairwise vertex disjoint subset of F_{M} is a Clar set with respect to M. A subset C of the faces is a Clar set if there exists a perfect matching M for which C is a Clar set with respect to M. Note that a set of pairwise vertex disjoint even faces is a Clar set if and only if deleting all (the nodes of) these even faces the remaining graph still has a perfect matching. The Clar number of G, denoted by $C l(G)$ is the maximum size of a Clar set.

It was proved by Abeledo and Atkinson [T] that the Clar number can be computed in polynomial time if G is bipartite planar.

In this quick proof we show that the general problem is NP-hard.
Theorem 1. It is NP-hard to calculate the Clar number of a planar graph.

2 Independent Set Problem

Definition 2. Let $\alpha(G)$ denote the maximum size of an independent set in G.
Lemma 3. The Independent Set problem is NP-hard even for planar graphs with odd faces only.

Proof. The independent set problem is NP-hard for planar graphs (see Problem GT20 in [Z] $)$. Let $G=(V, E)$ denote an instance of this problem. If G has an even face F, let G_{F} denote the planar graph attained from G by the following operation. We add three vertices a, b, c inside F and edges $a b, b c, c a, a u, b u, b v$ where u and v form an edge of F (see Figure (I).
Claim 4. $\alpha\left(G_{F}\right)=1+\alpha(G)$.

Figure 1: Eliminating even faces.

Proof. First, for an independent set I of G, clearly $I \cup c$ is independent in G_{F} and hence $\alpha\left(G_{F}\right) \geq 1+\alpha(G)$. Second, an independent set I_{F} in G_{F} can contain at most one vertex from the set $\{a, b, c\}$. Since $I_{F} \backslash\{a, b, c\}$ is independent in G we get that $\alpha(G) \geq \alpha\left(G_{F}\right)-1$.

Note that the number of even faces of G_{F} is one less than that of G. Let \mathbb{F} denote the set of even faces of G. By consecutively applying the above operation on every member of \mathbb{F} we get another graph $G_{\mathbb{F}}$ for which $\alpha\left(G_{\mathbb{F}}\right)=\alpha(G)+|\mathbb{F}|$ and which has odd faces only.

3 Proof of Theorem

Proof of Theorem [\square. We prove the theorem by reducing the Independent Set problem for planar graphs with odd faces to the Clar number problem. Let $G=(V, E)$ denote a 2-connected instance of this problem (the proof can be easily extended to general connected graphs). We construct graph G^{\prime} the following way: for every edge of G we add two vertices to G^{\prime}. Let $u v \in E$ be an edge of G and let F_{1} and F_{2} denote the faces $u v$ is incident to. We add vertices $u v_{F_{1}}$ and $u v_{F_{2}}$ to G^{\prime} along with the edge $u v_{F_{1}} u v_{F_{2}}$. If edges $u v$ and $v w$ are neighboring edges on a face F, then we add edge $u v_{F} v w_{F}$ to G^{\prime}. It is easy to see that G^{\prime} is planar (see Figure (Z). The faces of G^{\prime} correspond to the faces and vertices of G, and if G has odd faces only, then all the even faces of G^{\prime} are the ones corresponding to vertices of G. Note that G^{\prime} trivially has a perfect matching M consisting of the edges of the form $u v_{F_{1}} u v_{F_{2}}$, for every $u v \in E$. Since M is alternating on every even face of G^{\prime}, corresponding to a vertice of G, that is, on every even face of G^{\prime}, for this graph the Clar number equals the maximum size of a Clar set with respect to M. The Clar sets of G^{\prime} and the independent sets of G have

Figure 2: Reduction of Independent Set
a one to one correspondance, proving the theorem.

Corollary 5. It is also NP-hard to find a maximum cardinality Clar set with respect to a fixed perfect matching.

4 Open questions

We proved the NP-hardness of the Clar number for general planar graphs. The classical case of the Clar number, when G has exactly twelve pentagonal faces and every other face is a hexagon, however, is still open. If we were able to specialize the Independent Set problem further to 3-regular planar graphs with odd faces, we would get that the Clar number is NP-hard for graphs whith only hexagonal even faces.

References

[1] H. G. Abeledo and G. W. Atkinson, A min-max theorem for plane bipartite graphs, Discrete Applied Mathematics 158 (2010), no. 5, 375-378.
[2] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman \& Co., New York, NY, USA, 1979.

