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A unified proof for Karzanov’s exact matching
theorem

Hans-Florian Geerdes* and Jacint Szabo™

Abstract

We give a short inductive proof for a pair of theorems of Karzanov charac-
terizing when complete and complete bipartite graphs with red and blue edges
have a perfect matching with exactly k red edges. In contrast with Karzanov’s
approach, our proof handles both cases simultaneously.

1 Introduction

Finding a perfect matching in a graph with edges colored red and blue, containing a
specified number of red edges, is the exact matching problem, introduced by Pa-
padimitriou and Yannakakis [6]. This problem admits an RP-algorithm (Mulmuley,
Vazirani, Vazirani [5], see also Lovész [4]), but only some special graph classes are
known for which it is polynomial time solvable. For graphs which can be embedded
into a fixed orientable surface, Galluccio and Loebl [2] gave a pseudo-polynomial al-
gorithm based on Pfaffian orientations, generalizing the analogous result of Barahona
and Pulleyblank [1| on planar graphs. For complete bipartite graphs and complete
graphs Karzanov [3| gave a characterization to the exact matching problem. This is
rephrased in Theorem 4 in the present paper. Yi, Murty, and Spera [7] gave an alter-
native proof to Karzanov’s characterization, and also the first polynomial algorithm
to complete bipartite and complete graphs. These characterizations are the starting
point of the present note, whose aim is to give a short and unified proof to Karzanov’s
theorem.

We remark that if the number of colors is not restricted to two, then the analogous
problem is NP-complete. Indeed, the 3-dimensional perfect matching problem in
3-partite graphs can be reduced to the problem of finding a multicolored perfect
matching in an n-edge-colored bipartite graph K, ,,.
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Figure 1: An example to coloring (cl) in Ky44. Only the red edges are shown.
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Figure 2: An example to coloring (c1) in Kg. Only the red edges are shown.

Throughout, G = (V, E) is a simple undirected graph whose edge set is partitioned
into red and blue edges: £ = ErU Ep. Let Gg = (V, Er) and vg be the maximum size
of a matching in G (similarly for G and vg). A subgraph with & red and ¢ blue edges
is a (k, /)-subgraph. We analogously define (odd, odd), (odd, 1), etc. subgraphs. An
[-circuit is a circuit of length [. Complete and complete bipartite graphs are full,
K, and K, , are balanced. Component in a graph means connected component.
If v € V is incident to no, say, red edge, then {v} appears in Gy as a singleton
component.

2 The proof

In the focus of the proof stand some special types of colorings.

e Coloring (c1): All components of G and Gp are full.
e Coloring (c2r): All components of G are balanced.

e Coloring (¢2b): All components of G are balanced.

Some examples can be seen in Figures 1, 2 and 3. For x — 1, 2r or 2b we use the
notation G ~ (cx) if G has coloring of type (cx). It is easy to characterize how a
coloring of type (c1) may look like. If G is a balanced bipartite graph with classes U
and W and G ~ (c1), then there exist partitions U = U;UUy and W = W UW, (U;, W;
can also be empty) such that G is exactly the union of Ky, w, and Ky, w,, and Gp is
exactly the union of Ky, w, and Ky, w,. If G = (V. E) is a balanced complete graph
and G ~ (cl), then there exists a partition V' = V;UV,, where |V;| > 2 and even for

X

Figure 3: An example to coloring (c2r) in K55 and Kj9. Only the red edges are shown.

[ e T @ b [ ¢ 8 |

EGRES Quick-Proof No. 2011-02



H.-F. Geerdes, J. Szabé: A unified proof for Karzanov’s exact matching theorem 3

¢ = 1,2, such that one of Gy and Gp is Ky, y,, while the other is the union of Ky,
and KVQ'
The following lemma is easy to check by the help of Figures 1, 2 and 3.

Lemma 1. Let G be balanced and kg < vy, kg < vp.
e IfG ~ (cl) and kg = vp (mod2) (and then also kr = vg (mod2)),
e orif G~ (c2r) and kg € {0, 2},
e orif G ~ (¢2b) and kg € {0,2},

then G has a (kg, kg)-matching. Furthermore, every edge f € E belongs to a (kgr, kpg)-
matching, except of course if f is red and kg =0, or if f is blue and kg = 0. L

Lemma 2. Let G be balanced.
(11) Every 4-circuit is (even, even) <= G ~ (cl).

(12r) G has a perfect red matching and has no 4-circuit which is (odd, 1) <= G ~
(c2r).

(12b) G has a perfect blue matching and has no 4-circuit with is (1, odd) <= G ~
(c2b).

Proof. We only focus on (11) and (12r), as (I12b) is analogous to (12r). Directions <=
are clear in both cases. For directions =, instead of a circuit, we first prove the
existence of a cycle, that is a closed sequence of not necessarily disjoint or distinct
edges, with the requirement on the number of colors (i.e., the cycle is (even, even)
for (11) and even length but not (odd, 1) for (c2r)). First, if a component of G
induces both a blue edge and an odd red circuit, then it is not hard to construct an
(odd, 1)-cycle. Thus we may assume that every component of G is either bipartite
or complete. An (odd, 1)-circuit can be found in a non-full bipartite component, too,
hence we may assume that every component of Gp is full.

(11) In the non-bipartite case, if G has at least three components, or if G has two
components at most one of which is a non-bipartite graph, then a (1, 3)-circuit
can be created. In all remaining cases G ~ (c1). In the bipartite case, if Gg has
at least three non-singleton components, or if G contains two non-singleton
and at least one singleton component, then a (1,3)-circuit can be created. In
all remaining cases G' ~ (c1).

(12r) G has a perfect red matching, thus all components of G are balanced.

Next we show that if G has an (odd, odd)-cycle C, then G has a 4-circuit C” which is
(odd, odd), moreover, if C' was (odd, 1), then C’ can be chosen to be (3,1). We denote
the nodes of C' by wy, ..., wy, wrt. their ordering. Observe that if C' has length at
most 4, then because of the parity condition, it is already a 4-circuit and we are done.
Otherwise we try to shortcut C at a node-pair w;, w; 3. If w; # w;,3, then w;w; 3
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is indeed an edge and both C := w;, ..., w3 and Cy := w;i3...w; (mod(2m)) are
shorter even cycles. Moreover, for either j =1 or j = 2, C; is (odd, odd), and if C'is
(odd, 1), then Cj is also (odd, 1). So we can apply induction.

Finally, we show that a node-pair w;, w; 3 with w; # w;, 3 can always be found. If
C has length at least 8, then we may assume that wy, ws or ws, wg would do, because
otherwise wy = wg and so either wy, ..., wg or wg ... wy (mod (2m)) are shorter cycles
with the required parity condition, and we can apply induction. Finally, if C' has
length 6, then w; # w;,3 for at least one choice of ¢ = 0, 1,2, because otherwise C
would go around a triangle twice, and so it would be (even, even). O

Lemma 3. Let G be balanced, uwv € E(G) be a red edge, and G' = G — {u,v}. For
x = 1, 2r or 2b, assume that G' ~ (cx), but G does not have coloring (cx). Then G
contains a 4-circuit C' with wv € E(C') which is either (3,1) or (1,3). Moreover, if x
= 2r, then C' can be chosen to be (3,1).

Proof. By Lemma 2, G’ does not and G does have a 4-circuit C' that is (odd, odd),
and that is (3,1) if x = 2r. Thus this C intersects {u,v}. Let the nodes of C
be wg, wy, wq, w3. If C'" already contains the edge uv, then we are done. Otherwise
{u,v} NV (C)| is either 1 or 2. Accordingly, we may distinguish the following cases.

e u=wy, v ¢ V(C). Note that vw, is an edge. Now either uvwsw; or uvwyws
is (odd, odd), moreover if x = 2r, then, since C' was (3, 1), this new 4-circuit is
also (3,1).

e u = wy, v =wy. Now Glwy, wy,wy, w3] ~ Ky, and so it decomposes into three
disjoint edge-pairs. Any two of these three edge-pairs give a 4-circuit. C itself
gives rise to two of these edge-pairs, one of them is (1,1), and the other one is
either (2,0) or (0,2), and it is (2,0) if x = 2r. The third edge pair, containing uv,
is either (2,0) or (1,1). Clearly, it is possible to construct a 4-circuit containing
uv, with the desired property on the number of colors.

O

Theorem 4 (Karzanov [3]). Let G ~ Ky, or K,,. Then G has a perfect matching
with kg red and kg = n — kg blue edges if and only if all of the following conditions
hold.
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Proof. First note that for any graph G, the failure of any of (t0)—(t2) objects G having
a (kg, kp)-matching. For the other direction, assume that G is a minimal balanced
graph satisfying (t0)—(t2) without a (kg,kp)-matching. The reader is welcome to
check that no such graph exists for n < 3, so we have n > 4. By symmetry we
may assume that kr > kg. Note that 0 < kr < vg since otherwise GG clearly has a
(kgr, kp)-matching.

We try to choose an edge uv € Eg such that (t0) holds for G’ = G — {u, v}, kf =
kr — 1, ks = kp. Observe that v > v — 2 so only kf; < v can fail. On one hand,
if vg = n, then v; > n —2 > |n/2| > kg = k’s. On the other hand, if vg < n then
it is possible to choose uv € Eg such that vj; = vg > kg = k’s. So (t0) holds for
G, Kk, k.

If G" had a (K, k'z)-matching, then together with the edge uv we would obtain a
(kr, kp)-matching of G. So G’ has no (k, kj3)-matching. Hence, by induction, G’
violates (tx) for x = 1, 2r or 2b (recall that (t0) holds for G’), in particular, G’ ~
(cx). We prove that G itself does not have coloring (cx). Assume G ~ (c1). Observe
that vz = vp except if vg = n, in which case it is easy to see from Figures 1 and 2
that vy = v — 2. Thus, since ky = kg, (t1) would fail for G. The case x = 2r is
trivial, because k% = kp. Finally, in the case x = 2b we have kg = 2; and if G had
coloring (¢2b), then it were easy to find a (2,n — 2)-matching of G. Hence indeed, G
itself does not have coloring (cx).

Therefore, we can apply Lemma 3, yielding a 4-circuit C' of G with uv € E(C') which
is (odd, odd), and which is (3,1) if G’ ~ (c2r). Note that C has a (1, 1)-matching.
If G —V(C) has a (kg — 1, kg — 1)-matching, then putting these together we obtain
a (kg, kp)-matching of G and we are done. By Lemma 1, applied to G’, ki, ks and
the unique edge f of C spanned by G’, the only case when G — V(C) fails to have a
(kr — 1, kp — 1)-matching is when kg = 1. We finish the proof depending on x.

1. By Lemma 1, G’ has an (n — 1, 0)-matching, that is a perfect red matching. So,
by Figures 1 and 2, the coloring of G’ also satisfies (c2r). So the next point
applies.

2r. Now C' can be chosen to be (3,1). Moreover, by Lemma 1, G — V(C) has a
(kr — 2, kp)-matching. These together form the required (kg, kp)-matching of
G.

2b. kg =kr+1=2and so 4 <n=kr+ kg =3, which is impossible.
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