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A uni�ed proof for Karzanov's exa
t mat
hingtheoremHans-Florian Geerdes⋆ and Já
int Szabó⋆⋆Abstra
tWe give a short indu
tive proof for a pair of theorems of Karzanov 
hara
-terizing when 
omplete and 
omplete bipartite graphs with red and blue edgeshave a perfe
t mat
hing with exa
tly k red edges. In 
ontrast with Karzanov'sapproa
h, our proof handles both 
ases simultaneously.1 Introdu
tionFinding a perfe
t mat
hing in a graph with edges 
olored red and blue, 
ontaining aspe
i�ed number of red edges, is the exa
t mat
hing problem, introdu
ed by Pa-padimitriou and Yannakakis [6℄. This problem admits an RP-algorithm (Mulmuley,Vazirani, Vazirani [5℄, see also Lovász [4℄), but only some spe
ial graph 
lasses areknown for whi
h it is polynomial time solvable. For graphs whi
h 
an be embeddedinto a �xed orientable surfa
e, Gallu

io and Loebl [2℄ gave a pseudo-polynomial al-gorithm based on Pfa�an orientations, generalizing the analogous result of Barahonaand Pulleyblank [1℄ on planar graphs. For 
omplete bipartite graphs and 
ompletegraphs Karzanov [3℄ gave a 
hara
terization to the exa
t mat
hing problem. This isrephrased in Theorem 4 in the present paper. Yi, Murty, and Spera [7℄ gave an alter-native proof to Karzanov's 
hara
terization, and also the �rst polynomial algorithmto 
omplete bipartite and 
omplete graphs. These 
hara
terizations are the startingpoint of the present note, whose aim is to give a short and uni�ed proof to Karzanov'stheorem.We remark that if the number of 
olors is not restri
ted to two, then the analogousproblem is NP-
omplete. Indeed, the 3-dimensional perfe
t mat
hing problem in3-partite graphs 
an be redu
ed to the problem of �nding a multi
olored perfe
tmat
hing in an n-edge-
olored bipartite graph Kn,n.
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Figure 1: An example to 
oloring (
1) in K4,4. Only the red edges are shown.
Figure 2: An example to 
oloring (
1) in K6. Only the red edges are shown.Throughout, G = (V,E) is a simple undire
ted graph whose edge set is partitionedinto red and blue edges: E = ER ∪̇EB. LetGR = (V,ER) and νR be the maximum sizeof a mat
hing inGR (similarly forGB and νB). A subgraph with k red and ℓ blue edgesis a (k, ℓ)-subgraph. We analogously de�ne (odd, odd), (odd, 1), et
. subgraphs. An

l-
ir
uit is a 
ir
uit of length l. Complete and 
omplete bipartite graphs are full,
K2n and Kn,n are balan
ed. Component in a graph means 
onne
ted 
omponent.If v ∈ V is in
ident to no, say, red edge, then {v} appears in GR as a singleton
omponent.2 The proofIn the fo
us of the proof stand some spe
ial types of 
olorings.

• Coloring (
1): All 
omponents of GR and GB are full.
• Coloring (
2r): All 
omponents of GR are balan
ed.
• Coloring (
2b): All 
omponents of GB are balan
ed.Some examples 
an be seen in Figures 1, 2 and 3. For x = 1, 2r or 2b we use thenotation G ∼ (
x) if G has 
oloring of type (
x). It is easy to 
hara
terize how a
oloring of type (
1) may look like. If G is a balan
ed bipartite graph with 
lasses UandW and G ∼ (
1), then there exist partitions U = U1∪̇U2 andW = W1∪̇W2 (Ui,Wi
an also be empty) su
h that GR is exa
tly the union of KU1,W1

and KU2,W2
, and GB isexa
tly the union of KU1,W2

and KU2,W1
. If G = (V,E) is a balan
ed 
omplete graphand G ∼ (
1), then there exists a partition V = V1∪̇V2, where |Vi| ≥ 2 and even for

Figure 3: An example to 
oloring (
2r) inK5,5 and K10. Only the red edges are shown.EGRES Qui
k-Proof No. 2011-02
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i = 1, 2, su
h that one of GR and GB is KV1,V2

, while the other is the union of KV1and KV2
.The following lemma is easy to 
he
k by the help of Figures 1, 2 and 3.Lemma 1. Let G be balan
ed and kR ≤ νR, kB ≤ νB.

• If G ∼ (
1) and kB ≡ νB (mod2) (and then also kR ≡ νR (mod2)),
• or if G ∼ (
2r) and kB ∈ {0, 2},
• or if G ∼ (
2b) and kR ∈ {0, 2},then G has a (kR, kB)-mat
hing. Furthermore, every edge f ∈ E belongs to a (kR, kB)-mat
hing, ex
ept of 
ourse if f is red and kR = 0, or if f is blue and kB = 0.Lemma 2. Let G be balan
ed.(l1) Every 4-
ir
uit is (even, even) ⇐⇒ G ∼ (
1).(l2r) G has a perfe
t red mat
hing and has no 4-
ir
uit whi
h is (odd, 1) ⇐⇒ G ∼(
2r).(l2b) G has a perfe
t blue mat
hing and has no 4-
ir
uit with is (1, odd) ⇐⇒ G ∼(
2b).Proof. We only fo
us on (l1) and (l2r), as (l2b) is analogous to (l2r). Dire
tions ⇐=are 
lear in both 
ases. For dire
tions =⇒, instead of a 
ir
uit, we �rst prove theexisten
e of a 
y
le, that is a 
losed sequen
e of not ne
essarily disjoint or distin
tedges, with the requirement on the number of 
olors (i.e., the 
y
le is (even, even)for (l1) and even length but not (odd, 1) for (
2r)). First, if a 
omponent of GRindu
es both a blue edge and an odd red 
ir
uit, then it is not hard to 
onstru
t an(odd, 1)-
y
le. Thus we may assume that every 
omponent of GR is either bipartiteor 
omplete. An (odd, 1)-
ir
uit 
an be found in a non-full bipartite 
omponent, too,hen
e we may assume that every 
omponent of GR is full.(l1) In the non-bipartite 
ase, if GR has at least three 
omponents, or if GR has two
omponents at most one of whi
h is a non-bipartite graph, then a (1, 3)-
ir
uit
an be 
reated. In all remaining 
ases G ∼ (
1). In the bipartite 
ase, if GR hasat least three non-singleton 
omponents, or if GR 
ontains two non-singletonand at least one singleton 
omponent, then a (1, 3)-
ir
uit 
an be 
reated. Inall remaining 
ases G ∼ (
1).(l2r) G has a perfe
t red mat
hing, thus all 
omponents of GR are balan
ed.Next we show that ifG has an (odd, odd)-
y
le C, then G has a 4-
ir
uit C ′ whi
h is(odd, odd), moreover, if C was (odd, 1), then C ′ 
an be 
hosen to be (3,1). We denotethe nodes of C by w1, . . . , w2m wrt. their ordering. Observe that if C has length atmost 4, then be
ause of the parity 
ondition, it is already a 4-
ir
uit and we are done.Otherwise we try to short
ut C at a node-pair wi, wi+3. If wi 6= wi+3, then wiwi+3EGRES Qui
k-Proof No. 2011-02
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hing theorem 4is indeed an edge and both C1 := wi, . . . , wi+3 and C2 := wi+3 . . . wi (mod(2m)) areshorter even 
y
les. Moreover, for either j = 1 or j = 2, Cj is (odd, odd), and if C is(odd, 1), then Cj is also (odd, 1). So we 
an apply indu
tion.Finally, we show that a node-pair wi, wi+3 with wi 6= wi+3 
an always be found. If
C has length at least 8, then we may assume that w0, w3 or w3, w6 would do, be
auseotherwise w0 = w6 and so either w0, . . . , w6 or w6 . . . w0 (mod (2m)) are shorter 
y
leswith the required parity 
ondition, and we 
an apply indu
tion. Finally, if C haslength 6, then wi 6= wi+3 for at least one 
hoi
e of i = 0, 1, 2, be
ause otherwise Cwould go around a triangle twi
e, and so it would be (even, even).Lemma 3. Let G be balan
ed, uv ∈ E(G) be a red edge, and G′ = G − {u, v}. Forx = 1, 2r or 2b, assume that G′ ∼ (
x), but G does not have 
oloring (
x). Then G
ontains a 4-
ir
uit C with uv ∈ E(C) whi
h is either (3, 1) or (1, 3). Moreover, if x= 2r, then C 
an be 
hosen to be (3, 1).Proof. By Lemma 2, G′ does not and G does have a 4-
ir
uit C that is (odd, odd),and that is (3, 1) if x = 2r. Thus this C interse
ts {u, v}. Let the nodes of Cbe w0, w1, w2, w3. If C already 
ontains the edge uv, then we are done. Otherwise
|{u, v} ∩ V (C)| is either 1 or 2. A

ordingly, we may distinguish the following 
ases.

• u = w0, v /∈ V (C). Note that vw2 is an edge. Now either uvw2w1 or uvw2w3is (odd, odd), moreover if x = 2r, then, sin
e C was (3, 1), this new 4-
ir
uit isalso (3, 1).
• u = w0, v = w2. Now G[w0, w1, w2, w3] ≃ K4, and so it de
omposes into threedisjoint edge-pairs. Any two of these three edge-pairs give a 4-
ir
uit. C itselfgives rise to two of these edge-pairs, one of them is (1, 1), and the other one iseither (2, 0) or (0, 2), and it is (2, 0) if x = 2r. The third edge pair, 
ontaining uv,is either (2, 0) or (1, 1). Clearly, it is possible to 
onstru
t a 4-
ir
uit 
ontaining
uv, with the desired property on the number of 
olors.

Theorem 4 (Karzanov [3℄). Let G ≃ K2n or Kn,n. Then G has a perfe
t mat
hingwith kR red and kB = n− kR blue edges if and only if all of the following 
onditionshold.(t0) kR ≤ νR and kB ≤ νB.(t1) G ∼ (
1) =⇒ kB ≡ νB (mod2) (and then also kR ≡ νR (mod2)).(t2r) G ∼ (
2r) =⇒ kB 6= 1.(t2b) G ∼ (
2b) =⇒ kR 6= 1.
EGRES Qui
k-Proof No. 2011-02
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hing theorem 5Proof. First note that for any graph G, the failure of any of (t0)�(t2) obje
ts G havinga (kR, kB)-mat
hing. For the other dire
tion, assume that G is a minimal balan
edgraph satisfying (t0)�(t2) without a (kR, kB)-mat
hing. The reader is wel
ome to
he
k that no su
h graph exists for n ≤ 3, so we have n ≥ 4. By symmetry wemay assume that kR ≥ kB. Note that 0 < kR < νR sin
e otherwise G 
learly has a
(kR, kB)-mat
hing.We try to 
hoose an edge uv ∈ ER su
h that (t0) holds for G′ = G− {u, v}, k′

R =
kR − 1, k′

B = kB. Observe that ν ′

R ≥ νR − 2 so only k′

B ≤ ν ′

B 
an fail. On one hand,if νB = n, then ν ′

B ≥ n − 2 ≥ ⌊n/2⌋ ≥ kB = k′

B. On the other hand, if νB < n thenit is possible to 
hoose uv ∈ ER su
h that ν ′

B = νB ≥ kB = k′

B. So (t0) holds for
G′, k′

R, k
′

B.If G′ had a (k′

R, k
′

B)-mat
hing, then together with the edge uv we would obtain a
(kR, kB)-mat
hing of G. So G′ has no (k′

R, k
′

B)-mat
hing. Hen
e, by indu
tion, G′violates (tx) for x = 1, 2r or 2b (re
all that (t0) holds for G′), in parti
ular, G′ ∼(
x). We prove that G itself does not have 
oloring (
x). Assume G ∼ (
1). Observethat ν ′

B = νB ex
ept if νB = n, in whi
h 
ase it is easy to see from Figures 1 and 2that ν ′

B = νB − 2. Thus, sin
e k′

B = kB, (t1) would fail for G. The 
ase x = 2r istrivial, be
ause k′

B = kB. Finally, in the 
ase x = 2b we have kR = 2; and if G had
oloring (
2b), then it were easy to �nd a (2, n− 2)-mat
hing of G. Hen
e indeed, Gitself does not have 
oloring (
x).Therefore, we 
an apply Lemma 3, yielding a 4-
ir
uit C ofG with uv ∈ E(C) whi
his (odd, odd), and whi
h is (3, 1) if G′ ∼ (
2r). Note that C has a (1, 1)-mat
hing.If G− V (C) has a (kR − 1, kB − 1)-mat
hing, then putting these together we obtaina (kR, kB)-mat
hing of G and we are done. By Lemma 1, applied to G′, k′

R, k
′

B andthe unique edge f of C spanned by G′, the only 
ase when G− V (C) fails to have a
(kR − 1, kB − 1)-mat
hing is when kB = 1. We �nish the proof depending on x.1. By Lemma 1, G′ has an (n− 1, 0)-mat
hing, that is a perfe
t red mat
hing. So,by Figures 1 and 2, the 
oloring of G′ also satis�es (
2r). So the next pointapplies.2r. Now C 
an be 
hosen to be (3, 1). Moreover, by Lemma 1, G − V (C) has a

(kR − 2, kB)-mat
hing. These together form the required (kR, kB)-mat
hing of
G.2b. kR = k′

R + 1 = 2 and so 4 ≤ n = kR + kB = 3, whi
h is impossible.
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