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A uni�ed proof for Karzanov's exat mathingtheoremHans-Florian Geerdes⋆ and Jáint Szabó⋆⋆AbstratWe give a short indutive proof for a pair of theorems of Karzanov hara-terizing when omplete and omplete bipartite graphs with red and blue edgeshave a perfet mathing with exatly k red edges. In ontrast with Karzanov'sapproah, our proof handles both ases simultaneously.1 IntrodutionFinding a perfet mathing in a graph with edges olored red and blue, ontaining aspei�ed number of red edges, is the exat mathing problem, introdued by Pa-padimitriou and Yannakakis [6℄. This problem admits an RP-algorithm (Mulmuley,Vazirani, Vazirani [5℄, see also Lovász [4℄), but only some speial graph lasses areknown for whih it is polynomial time solvable. For graphs whih an be embeddedinto a �xed orientable surfae, Galluio and Loebl [2℄ gave a pseudo-polynomial al-gorithm based on Pfa�an orientations, generalizing the analogous result of Barahonaand Pulleyblank [1℄ on planar graphs. For omplete bipartite graphs and ompletegraphs Karzanov [3℄ gave a haraterization to the exat mathing problem. This isrephrased in Theorem 4 in the present paper. Yi, Murty, and Spera [7℄ gave an alter-native proof to Karzanov's haraterization, and also the �rst polynomial algorithmto omplete bipartite and omplete graphs. These haraterizations are the startingpoint of the present note, whose aim is to give a short and uni�ed proof to Karzanov'stheorem.We remark that if the number of olors is not restrited to two, then the analogousproblem is NP-omplete. Indeed, the 3-dimensional perfet mathing problem in3-partite graphs an be redued to the problem of �nding a multiolored perfetmathing in an n-edge-olored bipartite graph Kn,n.
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Figure 1: An example to oloring (1) in K4,4. Only the red edges are shown.
Figure 2: An example to oloring (1) in K6. Only the red edges are shown.Throughout, G = (V,E) is a simple undireted graph whose edge set is partitionedinto red and blue edges: E = ER ∪̇EB. LetGR = (V,ER) and νR be the maximum sizeof a mathing inGR (similarly forGB and νB). A subgraph with k red and ℓ blue edgesis a (k, ℓ)-subgraph. We analogously de�ne (odd, odd), (odd, 1), et. subgraphs. An

l-iruit is a iruit of length l. Complete and omplete bipartite graphs are full,
K2n and Kn,n are balaned. Component in a graph means onneted omponent.If v ∈ V is inident to no, say, red edge, then {v} appears in GR as a singletonomponent.2 The proofIn the fous of the proof stand some speial types of olorings.

• Coloring (1): All omponents of GR and GB are full.
• Coloring (2r): All omponents of GR are balaned.
• Coloring (2b): All omponents of GB are balaned.Some examples an be seen in Figures 1, 2 and 3. For x = 1, 2r or 2b we use thenotation G ∼ (x) if G has oloring of type (x). It is easy to haraterize how aoloring of type (1) may look like. If G is a balaned bipartite graph with lasses UandW and G ∼ (1), then there exist partitions U = U1∪̇U2 andW = W1∪̇W2 (Ui,Wian also be empty) suh that GR is exatly the union of KU1,W1

and KU2,W2
, and GB isexatly the union of KU1,W2

and KU2,W1
. If G = (V,E) is a balaned omplete graphand G ∼ (1), then there exists a partition V = V1∪̇V2, where |Vi| ≥ 2 and even for

Figure 3: An example to oloring (2r) inK5,5 and K10. Only the red edges are shown.EGRES Quik-Proof No. 2011-02
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i = 1, 2, suh that one of GR and GB is KV1,V2

, while the other is the union of KV1and KV2
.The following lemma is easy to hek by the help of Figures 1, 2 and 3.Lemma 1. Let G be balaned and kR ≤ νR, kB ≤ νB.

• If G ∼ (1) and kB ≡ νB (mod2) (and then also kR ≡ νR (mod2)),
• or if G ∼ (2r) and kB ∈ {0, 2},
• or if G ∼ (2b) and kR ∈ {0, 2},then G has a (kR, kB)-mathing. Furthermore, every edge f ∈ E belongs to a (kR, kB)-mathing, exept of ourse if f is red and kR = 0, or if f is blue and kB = 0.Lemma 2. Let G be balaned.(l1) Every 4-iruit is (even, even) ⇐⇒ G ∼ (1).(l2r) G has a perfet red mathing and has no 4-iruit whih is (odd, 1) ⇐⇒ G ∼(2r).(l2b) G has a perfet blue mathing and has no 4-iruit with is (1, odd) ⇐⇒ G ∼(2b).Proof. We only fous on (l1) and (l2r), as (l2b) is analogous to (l2r). Diretions ⇐=are lear in both ases. For diretions =⇒, instead of a iruit, we �rst prove theexistene of a yle, that is a losed sequene of not neessarily disjoint or distintedges, with the requirement on the number of olors (i.e., the yle is (even, even)for (l1) and even length but not (odd, 1) for (2r)). First, if a omponent of GRindues both a blue edge and an odd red iruit, then it is not hard to onstrut an(odd, 1)-yle. Thus we may assume that every omponent of GR is either bipartiteor omplete. An (odd, 1)-iruit an be found in a non-full bipartite omponent, too,hene we may assume that every omponent of GR is full.(l1) In the non-bipartite ase, if GR has at least three omponents, or if GR has twoomponents at most one of whih is a non-bipartite graph, then a (1, 3)-iruitan be reated. In all remaining ases G ∼ (1). In the bipartite ase, if GR hasat least three non-singleton omponents, or if GR ontains two non-singletonand at least one singleton omponent, then a (1, 3)-iruit an be reated. Inall remaining ases G ∼ (1).(l2r) G has a perfet red mathing, thus all omponents of GR are balaned.Next we show that ifG has an (odd, odd)-yle C, then G has a 4-iruit C ′ whih is(odd, odd), moreover, if C was (odd, 1), then C ′ an be hosen to be (3,1). We denotethe nodes of C by w1, . . . , w2m wrt. their ordering. Observe that if C has length atmost 4, then beause of the parity ondition, it is already a 4-iruit and we are done.Otherwise we try to shortut C at a node-pair wi, wi+3. If wi 6= wi+3, then wiwi+3EGRES Quik-Proof No. 2011-02



H.-F. Geerdes, J. Szabó: A uni�ed proof for Karzanov's exat mathing theorem 4is indeed an edge and both C1 := wi, . . . , wi+3 and C2 := wi+3 . . . wi (mod(2m)) areshorter even yles. Moreover, for either j = 1 or j = 2, Cj is (odd, odd), and if C is(odd, 1), then Cj is also (odd, 1). So we an apply indution.Finally, we show that a node-pair wi, wi+3 with wi 6= wi+3 an always be found. If
C has length at least 8, then we may assume that w0, w3 or w3, w6 would do, beauseotherwise w0 = w6 and so either w0, . . . , w6 or w6 . . . w0 (mod (2m)) are shorter yleswith the required parity ondition, and we an apply indution. Finally, if C haslength 6, then wi 6= wi+3 for at least one hoie of i = 0, 1, 2, beause otherwise Cwould go around a triangle twie, and so it would be (even, even).Lemma 3. Let G be balaned, uv ∈ E(G) be a red edge, and G′ = G − {u, v}. Forx = 1, 2r or 2b, assume that G′ ∼ (x), but G does not have oloring (x). Then Gontains a 4-iruit C with uv ∈ E(C) whih is either (3, 1) or (1, 3). Moreover, if x= 2r, then C an be hosen to be (3, 1).Proof. By Lemma 2, G′ does not and G does have a 4-iruit C that is (odd, odd),and that is (3, 1) if x = 2r. Thus this C intersets {u, v}. Let the nodes of Cbe w0, w1, w2, w3. If C already ontains the edge uv, then we are done. Otherwise
|{u, v} ∩ V (C)| is either 1 or 2. Aordingly, we may distinguish the following ases.

• u = w0, v /∈ V (C). Note that vw2 is an edge. Now either uvw2w1 or uvw2w3is (odd, odd), moreover if x = 2r, then, sine C was (3, 1), this new 4-iruit isalso (3, 1).
• u = w0, v = w2. Now G[w0, w1, w2, w3] ≃ K4, and so it deomposes into threedisjoint edge-pairs. Any two of these three edge-pairs give a 4-iruit. C itselfgives rise to two of these edge-pairs, one of them is (1, 1), and the other one iseither (2, 0) or (0, 2), and it is (2, 0) if x = 2r. The third edge pair, ontaining uv,is either (2, 0) or (1, 1). Clearly, it is possible to onstrut a 4-iruit ontaining
uv, with the desired property on the number of olors.

Theorem 4 (Karzanov [3℄). Let G ≃ K2n or Kn,n. Then G has a perfet mathingwith kR red and kB = n− kR blue edges if and only if all of the following onditionshold.(t0) kR ≤ νR and kB ≤ νB.(t1) G ∼ (1) =⇒ kB ≡ νB (mod2) (and then also kR ≡ νR (mod2)).(t2r) G ∼ (2r) =⇒ kB 6= 1.(t2b) G ∼ (2b) =⇒ kR 6= 1.
EGRES Quik-Proof No. 2011-02



H.-F. Geerdes, J. Szabó: A uni�ed proof for Karzanov's exat mathing theorem 5Proof. First note that for any graph G, the failure of any of (t0)�(t2) objets G havinga (kR, kB)-mathing. For the other diretion, assume that G is a minimal balanedgraph satisfying (t0)�(t2) without a (kR, kB)-mathing. The reader is welome tohek that no suh graph exists for n ≤ 3, so we have n ≥ 4. By symmetry wemay assume that kR ≥ kB. Note that 0 < kR < νR sine otherwise G learly has a
(kR, kB)-mathing.We try to hoose an edge uv ∈ ER suh that (t0) holds for G′ = G− {u, v}, k′

R =
kR − 1, k′

B = kB. Observe that ν ′

R ≥ νR − 2 so only k′

B ≤ ν ′

B an fail. On one hand,if νB = n, then ν ′

B ≥ n − 2 ≥ ⌊n/2⌋ ≥ kB = k′

B. On the other hand, if νB < n thenit is possible to hoose uv ∈ ER suh that ν ′

B = νB ≥ kB = k′

B. So (t0) holds for
G′, k′

R, k
′

B.If G′ had a (k′

R, k
′

B)-mathing, then together with the edge uv we would obtain a
(kR, kB)-mathing of G. So G′ has no (k′

R, k
′

B)-mathing. Hene, by indution, G′violates (tx) for x = 1, 2r or 2b (reall that (t0) holds for G′), in partiular, G′ ∼(x). We prove that G itself does not have oloring (x). Assume G ∼ (1). Observethat ν ′

B = νB exept if νB = n, in whih ase it is easy to see from Figures 1 and 2that ν ′

B = νB − 2. Thus, sine k′

B = kB, (t1) would fail for G. The ase x = 2r istrivial, beause k′

B = kB. Finally, in the ase x = 2b we have kR = 2; and if G hadoloring (2b), then it were easy to �nd a (2, n− 2)-mathing of G. Hene indeed, Gitself does not have oloring (x).Therefore, we an apply Lemma 3, yielding a 4-iruit C ofG with uv ∈ E(C) whihis (odd, odd), and whih is (3, 1) if G′ ∼ (2r). Note that C has a (1, 1)-mathing.If G− V (C) has a (kR − 1, kB − 1)-mathing, then putting these together we obtaina (kR, kB)-mathing of G and we are done. By Lemma 1, applied to G′, k′

R, k
′

B andthe unique edge f of C spanned by G′, the only ase when G− V (C) fails to have a
(kR − 1, kB − 1)-mathing is when kB = 1. We �nish the proof depending on x.1. By Lemma 1, G′ has an (n− 1, 0)-mathing, that is a perfet red mathing. So,by Figures 1 and 2, the oloring of G′ also satis�es (2r). So the next pointapplies.2r. Now C an be hosen to be (3, 1). Moreover, by Lemma 1, G − V (C) has a

(kR − 2, kB)-mathing. These together form the required (kR, kB)-mathing of
G.2b. kR = k′

R + 1 = 2 and so 4 ≤ n = kR + kB = 3, whih is impossible.
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