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Two remarks on local edge-connectivity of graphs

Zoltán Szigeti?

Abstract

We provide slight generalizations of a result of Lovász and a result of Hami-
doune and Las Vergnas on local edge-connectivities.

1 Local edge-connectivity in directed graphs

Let D = (V,A) be a directed graph. Multiple edges are allowed, but loops are not.
For a set X ⊆ V, let δ(X)= |{xy ∈ A : x ∈ X, y ∈ V − X}|, %(X)= δ(V − X).
For u, v ∈ V, the local edge-connectivity from u to v, λD(u, v), is defined as
the maximum number of edge disjoint paths from u to v. By Menger’s theorem,
λD(u, v) = min{%(Y ) : v ∈ Y ⊆ V − u}. A set Y providing the minimum is called
uv-tight. Note that for every vertex v 6= u, there exists a uv-tight set, and by the
submodularity of %, there exists a maximal such set Uv. We say that the vertex v is
a core of Uv.

Proposition 1. Let r be a vertex of a directed graph D such that δ(r) > %(r). Then
there exists a vertex s such that δ(s) < %(s).

Proof. Since
∑

v∈V (δ(v)− %(v)) = 0 and δ(r)− %(r) > 0, there exists a vertex s such
that δ(s)− %(s) < 0. 2

Theorem 1 (Lovász [2]). Let r be a vertex of a directed graph D such that δ(r) > %(r).
Then there exists a vertex s such that λ(r, s) > λ(s, r).

The proof of Lovász [2] for Theorem 1 with a convenient modification provides the
following common generalization of the above two results.

Theorem 2. Let r be a vertex of a directed graph D such that δ(r) > %(r). Then
there exists a vertex s such that λ(r, s) > λ(s, r) and δ(s) < %(s).

Proof. Let T := {v : δ(v) < %(v)}. Note that, by Proposition 1, T is not empty. Let
U := {U1, . . . , Uk} := {Uv : v ∈ T} be the set of maximal rv-tight sets where v ∈ T
and let Vi := Ui \

⋃
j 6=i Uj for i = 1, . . . , k.
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Claim 1. The core ui of Ui belongs to Vi for all i = 1, . . . , k.

Proof. If ui belonged to Uj for some j 6= i, then by tightness, the submodularity
of %, ui ∈ Ui ∩ Uj, uj ∈ Ui ∪ Uj and the maximality of Ui and Uj, we would have
λ(r, ui) + λ(r, uj) = %(Ui) + %(Uj) ≥ %(Ui ∩ Uj) + %(Ui ∪ Uj) > λ(r, ui) + λ(r, uj), a
contradiction. 2

Let V0 := U0 := V \
⋃k

1 Ui.

Claim 2. δ(U0) > %(V0).

Proof. By the definition of U , we have T ⊆
⋃k

1 Ui, so for every v ∈ U0, δ(v)−%(v) ≥ 0.
Moreover, r ∈ U0 and δ(r)− %(r) > 0, thus δ(U0)− %(V0) =

∑
v∈U0

(δ(v)− %(v)) > 0.
2

Suppose that (∗) λ(r, v) ≤ λ(v, r) for all v ∈ T.

Claim 3.
∑k

1 δ(Vi) ≥
∑k

1 %(Ui).

Proof. For every i = 1, . . . , k, by ui ∈ Vi ⊆ V − r, (∗) and the rui-tightness of Ui,
we have δ(Vi) ≥ λ(ui, r) ≥ λ(r, ui) = %(Ui), and the claim follows. 2

Claim 4.
∑k

0 δ(Vi) ≤
∑k

0 %(Ui).

Proof. Since {V0, V1, . . . , Vk} is a subpartition of V, every edge is counted at most
once on the left hand side. Let uv be an edge that contributes to the left hand side.
Then there exists an index i such that u ∈ Vi and v ∈ V \ Vi =

⋃
j 6=i Uj and hence

there exists an index j such that v ∈ Uj. Since u /∈ Uj, the edge uv contributes to the
right hand side and the claim follows. 2

Claims 2, 3 and 4 provide a contradiction. It follows that there exists a vertex
s ∈ T such that λ(r, s) > λ(s, r) and the theorem is proved. 2

2 Local edge-connectivity in regular bipartite graphs

Let G = (V,E) be an undirected graph. Multiple edges are allowed, but loops are
not. For a set X ⊆ V , let d(X)= |{xy ∈ E : x ∈ X, y ∈ V −X}|. For u, v ∈ V, the
local edge-connectivity from u to v, λG(u, v), is defined as the maximum number
of edge disjoint paths from u to v. By Menger’s theorem, λG(u, v) = min{d(Y ) : v ∈
Y ⊆ V −u}. A set Y providing the minimum is called uv-tight. Note that for every
vertex v 6= u, there exists a uv-tight set, and by the submodularity of d, there exists
a minimal such set Xv. We say that the vertex v is a core of Xv. The graph G is
called k-regular if each vertex of G is of degree k.

Proposition 2. Let G = (A,B;E) be a k-regular bipartite graph with k ≥ 1. Then
there exists a bijection {aibi : ai ∈ A, bi ∈ B} between A and B.

Proof. k|A| =
∑

a∈A d(a) = |E| =
∑

b∈B d(b) = k|B| and the proposition follows. 2
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Theorem 3 (Hamidoune and Las Vergnas [1]). Let G = (A,B;E) be a k-regular
bipartite graph with k ≥ 1. Then for every a ∈ A there exists b ∈ B such that
λ(a, b) = k.

The following theorem provides a common generalization of the above two results.

Theorem 4. Let G = (A,B;E) be a k-regular bipartite graph with k ≥ 1. Then there
exists a bijection {aibi : ai ∈ A, bi ∈ B} between A and B such that λ(ai, bi) = k for
all i.

Let H = (A,B;F ) be the bipartite graph where for a ∈ A and b ∈ B, ab ∈ F if
and only if λG(a, b) ≥ k. It is well-known that the connected components H1, . . . , Hl

are complete bipartite graphs. Theorem 4 is equivalent to the following Lemma. Let
Ai := V (Hi) ∩ A and Bi := V (Hi) ∩B.
Lemma 1. For every i, |Ai| = |Bi|.
Proof. In the whole proof we consider the graph G. Note that by Proposition 2,
|A| = |B|. Let a be an arbitrary vertex in Ai. Let X be the family {Xb : v ∈ B −Bi}
of the minimal ab-tight sets where b ∈ B −Bi. Note that d(X) < k for every X ∈ X .
Claim 5. X is a laminar family.

Proof. Suppose not, and let Xb1 and Xb2 be two crossing sets in X .
First suppose that Xb1 ∩ Xb2 contains b1 or b2, say b1. Then, by tightness, the

submodularity of d, b1 ∈ Xb1 ∩Xb2 , b2 ∈ Xb1 ∪Xb2 and the minimality of Xb1 , we have
λ(a, b1)+λ(a, b2) = d(Xb1)+d(Xb2) ≥ d(Xb1∩Xb2)+d(Xb1∪Xb2) > λ(a, b1)+λ(a, b2),
a contradiction.

Otherwise, b1 ∈ Xb1 \Xb2 and b2 ∈ Xb2 \Xb1 . Then, by tightness, the submodularity
of d, and the minimality of Xb1 , we have λ(a, b1) + λ(a, b2) = d(Xb1) + d(Xb2) ≥
d(Xb1 \Xb2) + d(Xb2 \Xb1) > λ(a, b1) + λ(a, b2), a contradiction. 2

Claim 6. For every X ∈ X , |X ∩ A| = |X ∩B|.
Proof. Let α := d(X ∩ A,B \ X) and β := d(X ∩ B,A \ X). Then, by X ∈ X ,
α + β = d(X) < k. Since k|X ∩ A| − α = d(X ∩ A,X ∩ B) = k|X ∩ B| − β, we get
that |X ∩ A| = |X ∩B|. 2

Let X ∗ be the maximal sets of X . By Claim 5, the elements of X ∗ are disjoint.
Let XA :=

⋃
{X ∩ A : X ∈ X ∗} and XB :=

⋃
{X ∩ B : X ∈ X ∗}. By Claim 6,

|XA| =
∑

X∈X ∗ |X ∩ A| =
∑

X∈X ∗ |X ∩ B| = |XB|. Note that Bi = B − XB and

Ai ⊆ A −XA and hence, by |A| = |B|, we have |Ai| ≤ |Bi|. Then |A| =
∑l

i=1 |Ai| ≤∑l
i=1 |Bi| = |B| = |A|, and the lemma follows. 2
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