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Computing the minimum cut in hypergraphic

matroids

Tamás Király?

Abstract

Hypergraphic matroids were de�ned by Lorea as generalizations of graphic

matroids. We show that the minimum cut (co-girth) of a multiple of a hyper-

graphic matroid can be computed in polynomial time.

It is well-known that the size of the minimum cut (co-girth) of a graph can be
computed in polynomial time. For connected graphs, this is equivalent to computing
the co-girth of the circuit matroid. On the other hand, it is NP-hard to determine
the girth of a transversal matroid (see McCormick [6]), so the problem of �nding the
co-girth is hard for fairly simple matroid classes such as gammoids. It would be useful
to have new classes of matroids where the problem is tractable. In the �rst section of
this note we brie�y review the known results on the co-girth of multiples of graphic
matroids, and in the second section we show that the problem remains tractable for
hypergraphic matroids.

1 Graphic matroids

A graph G = (V, E) is called k-partition-connected if

eG(P) ≥ k(|P| − 1) for every partition P ,

where eG(P) denotes the number of cross-edges, i.e. edges intersecting at least 2
members of the partition P . The graph G is (k, l)-partition-connected if it remains
k-partition-connected after the deletion of any l edges, or in other words,

eG(P) ≥ k(|P| − 1) + l for every non-trivial partition P .

If M is the circuit matroid of the graph G = (V, E), we call kM (the matroid sum
of k copies of M) the k-circuit matroid of G. The rank of kM is

rkM(E) = min{k(|V | − |P|) + eG(P) : P is a partition of V }. (1)
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This means that the rank is k(|V |−1) if and only if G is k-partition-connected. In this
case, the co-girth of kM is at least l + 1 if and only if G is (k, l)-partition-connected.
On the other hand, if G is connected but not k-partition-connected, then the co-girth
is 1, since every cross-edge of the partition giving the minimum in (1) is a co-loop.
The orientation theorems of Frank [1] imply that (k, l)-partition-connectivity can

be decided in polynomial time. One consequence is that the co-girth of a k-circuit
matroid can be computed in polynomial time: we can �nd the smallest l for which G
is (k, l)-partition-connected by binary search.

2 Hypergraphic matroids

Hypergraphic matroids were introduced by Lorea [5] as a generalization of graphic
matroids. Given a hypergraph H = (V, E), a subset F ⊆ E of hyperedges is a
hyperforest if one can choose two nodes from each hyperedge of F so that the resulting
graph is a forest. The circuit matroid of H is the matroid on ground set E whose
independent sets are the hyperforests.
If M is the circuit matroid of H = (V, E), then kM is called the k-circuit matroid

of H. The following result appeared in [3].

Theorem 1 (Frank, Király, Kriesell [3]). The rank of the k-circuit matroid of a

hypergraph H = (V, E) is

min{k(|V | − |P|) + eH(P) : P is a partition of V }, (2)

where eH(P) denotes the number of hyperedges intersecting at least 2 members of the

partition P.

Analogously to graphs, we say that the hypergraph H is k-partition-connected if

eH(P) ≥ k(|P| − 1) for every partition P ,

and (k, l)-partition-connected if

eH(P) ≥ k(|P| − 1) + l for every non-trivial partition P .

It follows from Theorem 1 that the k-circuit matroid of H has rank k(|V | − 1) if and
only if H is k-partition-connected. Moreover, if H is connected but not k-partition-
connected, then its co-girth is 1, since any cross-hyperedge of the partition giving the
minimum in (2) is a co-loop.
In the following we assume that H is k-partition-connected, so the co-girth of the

k-circuit-matroid is at least l + 1 if and only if H is (k, l)-partition-connected. To
determine the co-girth, we have to �nd the smallest l for which H is (k, l)-partition-
connected. This can be done by binary search if we can decide for a given l whether
H is (k, l)-partition-connected.
Although the main tools for solving this problem have been described in [2], the

paper did not explicitly address algorithmic aspects. The purpose of this note is to
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show that there is a polynomial algorithm to decide (k, l)-partition-connectivity of a
hypergraph. We do not aim to present a particularly fast algorithm; it remains an
interesting question how hard this problem is compared to �nding the minimum cut
of a graph.

Theorem 2. Let H be a k-partition-connected hypergraph, and l a positive integer.

It can be decided in polynomial time whether H is (k, l)-partition-connected.

Proof. The proof uses the notion of directed hypergaph. For de�nitions of hypergraph
orientations and (k, l)-arc-connectivity of directed hypergraphs, see [2].
Case 1: k ≥ l. The solution of this case is implicitly described in [2]. It is shown

there that H is (k, l)-partition-connected if and only if it has a (k, l)-arc-connected
orientation. Moreover, the paper shows that �nding a (k, l)-arc-connected orientation
of a hypergraph amounts to �nding an integer vector in a base polyhedron de�ned by
a crossing supermodular function (or proving that the polyhedron is empty), which
can be done in polynomial time.
Case 2: k < l. In this case the characterization of (k, l)-partition-connectivity is

more complicated. It is described by the following result of [2].

Lemma 3 (Frank, Király, Király [2]). Let k ≤ l be positive integers. A hypergraph

H = (V, E) is (k, l)-partition-connected if and only if for every pair s, t ∈ V it has a

k-arc-connected orientation where there are l arc-disjoint paths from s to t.

By the lemma, it su�ces to check whether for a given node pair s, t ∈ V there is a
k-arc-connected orientation of H where there are l arc-disjoint paths from s to t. We
show that this problem can be solved by �nding an integer vector in the intersection
of 2 base polyhedra.
Let us de�ne the following two set functions:

p1(X) =


0 if X = ∅ or X = V ,

−∞ if s ∈ X ⊆ V − t,

l if t ∈ X ⊆ V − s,

k otherwise,

p2(X) =


0 if X = ∅ or X = V ,

−∞ if t ∈ X ⊆ V − s,

k otherwise.

It is easy to see that both p1 and p2 are intersecting supermodular, so the set functions
de�ned by q1(X) = p1(X) + iH(X) and q1(X) = p2(X) + iH(X) are also intersecting
supermodular (where iH(X) denotes the number hyperedges of H induced by X).
Consequently, the following two polyhedra are base polyhedra:

B(q1) = {x ∈ RV :
∑
v∈V

xv = |E|,
∑
v∈X

x(v) ≥ q1(X) for every X ⊆ V },

B(q2) = {x ∈ RV :
∑
v∈V

xv = |E|,
∑
v∈X

x(v) ≥ q2(X) for every X ⊆ V }.
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An orientation D of H satis�es our requirements (it is k-arc-connected and has l
arc-disjoint paths from s to t) if and only if %D(X) ≥ max{p1(X), p2(X)} for every
X ⊆ V , or equivalently,∑

v∈X

%D(v) ≥ max{q1(X), q2(X)} for every X ⊆ V .

To �nish the proof, we use the following easy lemma from [2].

Lemma 4. Given a hypergraph H = (V, E) and a vector x ∈ ZV
+, there is an orienta-

tion D of H for which %D(v) = xv for every v ∈ V if and only if
∑

v∈V xv = |E| and∑
v∈X x(v) ≥ iH(X) for every X ⊆ V .

The lemma implies that there is an orientation D of H that satis�es our re-
quirements if and only if there is a vector x ∈ ZV

+ such that
∑

v∈V xv = |E| and∑
v∈X x(v) ≥ max{q1(X), q2(X)} for every X ⊆ V , since max{q1(X), q2(X)} ≥ iH(X)

for every X ⊆ V . Therefore, in order to �nd the orientation, we have to �nd an inte-
ger vector in B(q1) ∩ B(q2), or deduce that no such vector exists. This can be done
in polynomial time since B(q1) and B(q2) are base polyhedra given by intersecting
supermodular functions, and a polynomial time evaluation oracle as required in [4] is
available.
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