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Computing the minimum cut in hypergraphic
matroids

Tamas Kiraly”

Abstract

Hypergraphic matroids were defined by Lorea as generalizations of graphic
matroids. We show that the minimum cut (co-girth) of a multiple of a hyper-
graphic matroid can be computed in polynomial time.

It is well-known that the size of the minimum cut (co-girth) of a graph can be
computed in polynomial time. For connected graphs, this is equivalent to computing
the co-girth of the circuit matroid. On the other hand, it is NP-hard to determine
the girth of a transversal matroid (see McCormick [6]), so the problem of finding the
co-girth is hard for fairly simple matroid classes such as gammoids. It would be useful
to have new classes of matroids where the problem is tractable. In the first section of
this note we briefly review the known results on the co-girth of multiples of graphic
matroids, and in the second section we show that the problem remains tractable for
hypergraphic matroids.

1 Graphic matroids
A graph G = (V, E) is called k-partition-connected if
eq(P) > k(|P| — 1) for every partition P,

where eq(P) denotes the number of cross-edges, i.e. edges intersecting at least 2
members of the partition P. The graph G is (k,[)-partition-connected if it remains
k-partition-connected after the deletion of any [ edges, or in other words,

eq(P) > k(|P| — 1) + [ for every non-trivial partition P.

If M is the circuit matroid of the graph G = (V, E), we call kM (the matroid sum
of k copies of M) the k-circuit matroid of G. The rank of kM is

rem (E) = min{k(|V]| — |P|) + eq(P) : P is a partition of V'}. (1)
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This means that the rank is k(|V|—1) if and only if G is k-partition-connected. In this
case, the co-girth of kM is at least [ + 1 if and only if G is (k, [)-partition-connected.
On the other hand, if G is connected but not k-partition-connected, then the co-girth
is 1, since every cross-edge of the partition giving the minimum in is a co-loop.

The orientation theorems of Frank [I] imply that (k,[)-partition-connectivity can
be decided in polynomial time. One consequence is that the co-girth of a k-circuit
matroid can be computed in polynomial time: we can find the smallest [ for which G
is (k,l)-partition-connected by binary search.

2 Hypergraphic matroids

Hypergraphic matroids were introduced by Lorea [5] as a generalization of graphic
matroids. Given a hypergraph H = (V, E), a subset FF C FE of hyperedges is a
hyperforest if one can choose two nodes from each hyperedge of F' so that the resulting
graph is a forest. The circuit matroid of H is the matroid on ground set E whose
independent sets are the hyperforests.

If M is the circuit matroid of H = (V, E), then kM is called the k-circuit matroid
of H. The following result appeared in [3].

Theorem 1 (Frank, Kiraly, Kriesell [3]|). The rank of the k-circuit matroid of a
hypergraph H = (V, E) is

min{k(|V| —|P|) + ex(P) : P is a partition of V'}, (2)

where ey (P) denotes the number of hyperedges intersecting at least 2 members of the
partition P.

Analogously to graphs, we say that the hypergraph H is k-partition-connected if
en(P) > k(|P| — 1) for every partition P,
and (k,l)-partition-connected if
er(P) > k(|P| — 1) + 1 for every non-trivial partition P.

It follows from Theorem [l| that the k-circuit matroid of H has rank k(|V| — 1) if and
only if H is k-partition-connected. Moreover, if H is connected but not k-partition-
connected, then its co-girth is 1, since any cross-hyperedge of the partition giving the
minimum in (2)) is a co-loop.

In the following we assume that H is k-partition-connected, so the co-girth of the
k-circuit-matroid is at least | + 1 if and only if H is (k,)-partition-connected. To
determine the co-girth, we have to find the smallest [ for which H is (k,[)-partition-
connected. This can be done by binary search if we can decide for a given | whether
H is (k,l)-partition-connected.

Although the main tools for solving this problem have been described in [2], the
paper did not explicitly address algorithmic aspects. The purpose of this note is to
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show that there is a polynomial algorithm to decide (k,1)-partition-connectivity of a
hypergraph. We do not aim to present a particularly fast algorithm; it remains an
interesting question how hard this problem is compared to finding the minimum cut
of a graph.

Theorem 2. Let H be a k-partition-connected hypergraph, and | a positive integer.
It can be decided in polynomial time whether H is (k,l)-partition-connected.

Proof. The proof uses the notion of directed hypergaph. For definitions of hypergraph
orientations and (k,[)-arc-connectivity of directed hypergraphs, see [2].

Case 1: k > [. The solution of this case is implicitly described in [2]. It is shown
there that H is (k,[)-partition-connected if and only if it has a (k,[)-arc-connected
orientation. Moreover, the paper shows that finding a (k,[)-arc-connected orientation
of a hypergraph amounts to finding an integer vector in a base polyhedron defined by
a crossing supermodular function (or proving that the polyhedron is empty), which
can be done in polynomial time.

Case 2: k < [. In this case the characterization of (k,[)-partition-connectivity is
more complicated. It is described by the following result of [2].

Lemma 3 (Frank, Kiraly, Kiraly [2]). Let k < [ be positive integers. A hypergraph
H = (V,E) is (k,l)-partition-connected if and only if for every pair s,t € V it has a
k-arc-connected orientation where there are | arc-disjoint paths from s to t. O]

By the lemma, it suffices to check whether for a given node pair s,t € V there is a
k-arc-connected orientation of H where there are [ arc-disjoint paths from s to t. We
show that this problem can be solved by finding an integer vector in the intersection
of 2 base polyhedra.

Let us define the following two set functions:

(0 fX=0orX=1V,

—00 ifse XCV —t,
pl(X): .

l ifte X CV —s,

Lk otherwise,

(0 fX=0or X=V,
pe(X) = ¢ —o0 ifte X CV —s,

k otherwise.

It is easy to see that both p; and ps are intersecting supermodular, so the set functions
defined by ¢1(X) = p1(X) +ig(X) and ¢1(X) = po(X) + iy (X) are also intersecting
supermodular (where iy (X) denotes the number hyperedges of H induced by X).
Consequently, the following two polyhedra are base polyhedra:

B(q) = {z eR": va = |E)|, Zx(v) > ¢1(X) for every X C V},

veV veX
B(g) ={z €R": Y x,=|E|, ) x(v) > g(X) for every X C V}.
veV veX
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An orientation D of H satisfies our requirements (it is k-arc-connected and has [
arc-disjoint paths from s to t) if and only if op(X) > max{p;(X), p2(X)} for every
X CV, or equivalently,

Z op(v) > max{q(X), g(X)} for every X C V.

veX

To finish the proof, we use the following easy lemma from [2].

Lemma 4. Given a hypergraph H = (V, E) and a vector x € ZK, there is an orienta-
tion D of H for which op(v) = x, for every v € V if and only if 3 .\, x, = |E| and
Y ovex T(v) > ig(X) for every X C V.

The lemma implies that there is an orientation D of H that satisfies our re-
quirements if and only if there is a vector x € ZY such that > ., z, = |E| and
Y vex £(v) > max{q(X), g2(X)} for every X C V, since max{q,(X), ¢2(X)} > ig(X)
for every X C V. Therefore, in order to find the orientation, we have to find an inte-
ger vector in B(q1) N B(gz), or deduce that no such vector exists. This can be done
in polynomial time since B(q;) and B(qz) are base polyhedra given by intersecting
supermodular functions, and a polynomial time evaluation oracle as required in [4] is
available. O]
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