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Node-to-area connectivity augmentation of
hypergraphs without increasing the rank

Attila Bernáth?

Abstract
The rank-respecting node-to-area connectivity augmentation problem of hy-

pergraphs is the following: given a hypergraph H = (V, E) of rank at most
γ, a collection of subsets W of V and a requirement function r : W → Z+,
find a hypergraph H ′ of minimum total size such that λH+H′(x,W ) ≥ r(W )
for any W ∈ W and x ∈ V and the rank of H ′ is at most γ. This problem
was investigated by Ishii and Hagiwara for γ = 2 (i.e. graphs). Though the
problem is NP-complete (even if H is the empty graph and r(W ) = 1 for ev-
ery W ∈ W), they observed that the assumption r ≥ 2 surprisingly makes the
problem tractable and they gave a polynomial algorithm solving it in the γ = 2
case. In this note we solve this problem for any γ ≥ 3.

1 Introduction
Let us define the following rank-respecting node-to-area connectivity augmentation
problem of hypergraphs : given a hypergraph H = (V, E) of rank at most γ, a collection
of subsets W of V and a function r : W → Z+, find a hypergraph H ′ of minimum
total size such that λH+H′(x,W ) ≥ r(W ) for any W ∈ W and x ∈ V and the rank of
H ′ is at most γ. This problem was investigated by Ishii and Hagiwara in [2] for γ = 2
(i.e. graphs). Though the problem is NP-complete (even if H is the empty graph and
r(W ) = 1 for every W ∈ W), they observed that the assumption r ≥ 2 surprisingly
makes the problem tractable and they gave a polynomial algorithm solving it. The
problem for an arbitrary γ was introduced in [1], where we have shown that a greedy
algorithm almost gives an optimal solution for the problem: the algorithm shown
there can only fail by at most one for this problem, in other words, the total size
of the solution provided can be at most one more than the optimum, if γ ≥ 3. In
this note I want to show that a slight modification of that algorithm gives an optimal
solution to the problem.

Throughout I will use the notations introduced in [1]. This note does not want to
be self-contained: please read Sections 1,2,3 and 5 of [1] to become familiar with the
preliminaries.
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We will need the following observation about a crossing negamodular set function
q (where the notation Mq = max{q(X) : X ⊆ V } is used for any set function q).

If X, Y ⊆ V are crossing, q(X) = q(Y ) = Mq, then q(X ∩ Y ) = 1 and q(X ∪ Y ) = 1.
(1)

The following claim generalizes this statement in one direction. It is proved by a
simple induction.

Claim 1. Let q : 2V → Z be crossing negamodular and assume that X0, X1, X2, . . . , Xt

are subsets of V (where t ≥ 0) such that q(X0) = q(X1) = q(X2) = · · · = q(Xt) = Mq

and Xi crosses X0 ∪
⋃

j<iXj for any i = 1, 2, . . . , t. Then q(X0 ∪
⋃

j≤tXj) = Mq.

2 The result
The generalization of the above problem that I will consider is the following: assume
that we are given a crossing negamodular set function R : 2V → Z that does not take
1 as value. We will assume that R is given through a function-evaluation oracle. Let
furthermore H = (V, E) be an arbitrary hypergraph of rank at most γ. Consider the
problem of finding a hypergraph H ′ that covers q = R − dH , it has rank at most γ
and it has smallest possible total size. Let us call this problem the main problem. In
this note I want to solve this problem for any γ ≥ 3. The Algorithm GREEDYCOVER
given in [1] outputs a hypergraph covering q that has minimum total size, however
its rank may be bigger than γ (when it is γ + 1). We suggest the following simple
modification of that algorithm to solve our main problem. Assume that the Algorithm
GREEDYCOVER (with input p = (R − dH)s and a minimal m ∈ C(p) ∩ ZV ) did not
output a feasible hypergraph for this problem. Let the output of the algorithm be
G+ e (where G is a graph, e is a hyperedge of size γ + 1). Our idea is the following:
if the graph G does not contain edges at all, then it is easy to see that the greedy
bound cannot be achieved, but one more is already enough (and it is simple to see
how to reach it). Otherwise, if G contains an edge ab, then an appropriate node c ∈ e
can be deleted from e and added to ab (thus creating a hyperedge {a, b, c} of size 3)
and the hypergraph H ′ = (V,E(G) − {ab} + {a, b, c} + e′) of total size meeting the
greedy bound is a feasible solution, where e′ = e − c. In what follows we show that
almost any choice of c will be good. In the rest of this note we assume that we are at
the stuck situation of the Algorithm GREEDYCOVER (so the notations p,m, V + are
meant for this case). We will denote the output of the algorithm by G+ e (where G
is a graph and e is a hyperedge) and V + will just be a synonym for e. The following
lemma tells us the condition that we have to satisfy when choosing node c.

Lemma 1. Let p = p0 − dG with a symmetric positively skew-supermodular function
p0 and let m ∈ C(p). Assume that there does not exist an admissible splitting-off.
Let ab ∈ E(G) and c ∈ V + be arbitrary. Let the hypergraph G′ be obtained from G
by deleting the edge ab and adding the 3-hyperedge {a, b, c}, let p′ = p0 − dG′ and let
m′ = m − χ{c}. Then m′ ∈ C(p′) if and only if there is no set X ⊆ V satisfying
p(X) = m(X) = 1, c ∈ X and {a, b} ∩X 6= ∅.
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Proof. If m′ /∈ C(p′) then there must be a set X ⊆ V such that m′(X) < p′(X).
Since there was no admissible splitting-off, p ≤ 1 and it is easy to check that p′ ≤ p,
implying that p′(X) = p(X) = 1. This together with m ∈ C(p) gives that m(X) ≥
p(X) = p′(X) = 1 > m′(X), implying that c ∈ X and {a, b} ∩X 6= ∅, as claimed.

We want to characterize the situation when the Algorithm GREEDYCOVER fails
solving our main problem. Recall that for a pair u, v ∈ V +, the unique minimal set
blocking them is denoted by Xuv.

Claim 2. If there is no admissible splitting-off, tight sets are singletons and for four
nodes v1, v2, v3, v4 ∈ V + the sets Xv1v2 , Xv2v3 and Xv3v4 are all of the same type then
|Xv1v2| = |Xv2v3 | = |Xv3v4| = 2.

The following lemma was shown in [1], we recall the proof for sake of completeness.
A large hyperedge is a hyperedge that contains at least 2 positive nodes.

Lemma 2. If there is no admissible splitting-off, tight sets are singletons and m(V ) ≥
5 then there exists a large hyperedge. Furthermore, the number of positive nodes that
are avoided by a large hyperedge is at most one.

Proof. Assume that there is no large hyperedge. By the minimality of m, an arbitrary
x ∈ V + is contained in a non-singleton hyperedge e. We claim that neither the q-
graph nor the q-graph can contain a path consisting of 3 edges. Assume indirectly
that for some four nodes x, y, u, v ∈ V + the sets Xxy, Xyu, Xuv are all of the same
type: then Claim 2 gives that they all are of cardinality 2. But then Xxy and Xyu

cannot satisfy (−) with equality by the nonsingleton hyperedge containing y, proving
our claim. One can check that the edge set of a complete graph on at least 5 nodes
cannot be decomposed into 2 sets such that neither of them contains a path of 3 edges,
so there must be a large hyperedge.

Assume that there is a large hyperedge f that avoids x ∈ V +. Since f is large,
there exist u, v ∈ V + ∩ f . Xxu and Xxv must be of the same type by the crossing
negamodularity. If f avoids another positive node y then Xxu and Xyu cannot be of
the same type for similar reasons. This implies that f cannot avoid a third positive
node, so it contains at least 3 positive nodes, since m(V ) ≥ 5. Then the type of Xuv

and Xux must be different, since they cannot satisfy (−) with equality because of the
edge f that is not contained in Xuv. But then the type of Xuv and Xuy would be the
same, which cannot hold for the same reason, so f cannot avoid the second positive
node y. Furthermore, these observations on the qq-graph show that x can be the only
positive node that is avoided by a large hyperedge.

The following corollary can be read out from the proof.

Corollary 3. If there is no admissible splitting-off, tight sets are singletons and
m(V ) > γ ≥ 4 then there exists a large hyperedge f and a node x ∈ V + such that
f = V + − x. In this case either the q-graph or the q-graph is the complete graph on
V + − x and the other graph is the complement (i.e. a star) centered at x.
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We mention that if m(V ) = 4 then we don’t necessarily have large hyperedges:
an example can be found in [2]. One can also check that even if there are large
hyperedges, they might contain 2 positive nodes if m(V ) is only 4. However, the
second statement of Corollary 3 still holds.

Lemma 4. If there is no admissible splitting-off, tight sets are singletons and m(V ) =
4 and γ ≤ 3 then there exists a special node x ∈ V + such that either the q-graph or
the q-graph is the complete graph on V + − x and the other graph is the complement
(i.e. a star) centered at x.

Proof. We have to prove that neither the q-graph, nor the q-graph contains a path
of 3 edges. Assume that for four nodes v1, v2, v3, v4 ∈ V + the sets Xv1v2 , Xv2v3 and
Xv3v4 are all of the same type. By Claim 2 then |Xv1v2| = |Xv2v3| = |Xv3v4| = 2. Since
p(Xv2v3) = 1, a hyperedge h of H leaves the set Xv2v3 . Assume wlog. that h contains
v2: since Xv2v3 and Xv1v2 satisfies (−) with equality, h must contain v1, too, and h
cannot contain v4 (note that h cannot contain all the four nodes v1, v2, v3, v4). Since
Xv2v3 and Xv3v4 satisfies (−) with equality, h cannot contain v3 (in fact we proved
that h = v1v2). Because of the edge h, the type of Xv2v3 and Xv1v3 must be the same.
Since p(v3) = 1, there must be an edge g of H leaving v3: this edge cannot leave
{v2, v3, v4}, since (−) must hold with equality for Xv2v3 and Xv3v4 . In any case, either
Xv2v3 and Xv1v3 , or Xv1v3 and Xv3v4 will not satisfy (−) with equality.

In the lemmas above we have shown that there exists a unique positive node x
such that either the q-graph or the q-graph is the complete graph on V + − x and
the other graph is the complement (i.e. a star). This translated to the situation
before contraction means, that for any u ∈ V + there exists a tight set X(u) that was
contracted (so these sets are disjoint).

In the γ ≥ 4 case X(u) ∪X(v) is dangerous for any u, v ∈ V + − x. Furthermore
there exists at least one large hyperedge f ∈ H that has size γ and satisfies that
|f ∩X(u)| = 1 for any u ∈ V +−x. Let Y = V −∪u∈V +−xX(u), so X(x) ( Y (it must
be a proper subset, since p(Y ) 6= 1, since no hyperedge leaves Y ). In this case it is
not hard to see that every set Y ∪X(u) (u ∈ V +−x) is of q-type. It is clear, that the
graph G does not have edges between the partition classes {X(u) : u ∈ V +−x}∪{Y }.

On the other hand, in the γ ≤ 3 case there exists a set Z ⊆ V − ∪u∈V +X(u)
such that X(u) ∪ X(v) ∪ Z is dangerous for any u, v ∈ V + − x and these sets all
have the same type (Z is empty in the γ > 3 case). Let Y = V − Z − ∪u∈V +−xX(u):
again X(x) ( Y (it must be a proper subset, since p(Y ) 6= 1, since no hyperedge
leaves Y ). In this case the edges of G are either induced in a member of the partition
{X(u) : u ∈ V + − x} ∪ {Y, Z}, or they can even go between two classes (but only
between X(u) and X(v) or between X(u) and Z, where u, v ∈ V +−x). In both cases
we can prove the following lemma.

Lemma 5. The sets X(u) (u ∈ V + − x) are maximal tight sets.

Proof. Assume that there is u ∈ V + − x and a tight set X ) X(u). Let v, w ∈
V + − {u, x} be arbitrary and observe that type of X(v) ∪ X(w) ∪ Z and that of
Y ∪X(v) ∪X(w) ∪ Z is different: this follows from (1) applied to X(v) ∪X(w) ∪ Z
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and Y ∪X(v). This implies that X ∩X(v) = X ∩Z = ∅, since (∩∪) for X and either
of X(v) ∪ X(w) ∪ Z and Y ∪ X(v) ∪ X(w) ∪ Z (and p) would give a contradiction.
We only need to prove that X ∩ Y is empty. Assume that it is not and distinguish
the following two cases. Clearly, the type of X and Y ∪X(z) has to be the same for
any z ∈ V +− x, otherwise p(X ∩ (X(z)∪ Y )) = 1 would follow from (∩∪) for X and
X(z) ∪ Y , and it would give a contradiction.
CASE I: Every set Y ∪ X(z) (z ∈ V + − x) is of q-type. By (1) applied to X(v) ∪
X(w) ∪ Z and Y ∪X(v), the set Y ∪X(v) ∪X(w) ∪ Z would be of q-type, implying
that q(X ∩ Y ) = 1, a contradiction.
CASE II: Every set Y ∪X(z) (z ∈ V +− x) is of q-type. Apply Claim 1 for X0 = X
and the sets X(u)∪X(z)∪Z (z ∈ V +−x) to get that p(X ∪Z ∪

⋃
z∈V +−xX(z)) = 1.

Let Y ′ = V − (X ∪ Z ∪
⋃

z∈V +−xX(z)) = Y −X: it has p-value 1, so there must be
a hyperedge h leaving it. This hyperedge cannot leave Y , so it enters Y ∩ X. But
in this case the sets X ∪ X(v) ∪ Z and X ∪ X(w) ∪ Z could not satisfy (−) with
equality, though both of them have q-value 1. This contradiction finishes the proof of
this lemma.

This Lemma shows that our idea can be implemented the following way: if G
contains an edge ab, and c ∈ V +−x is such that X(c)∩{a, b} = ∅ then the hypergraph
H ′ = (V,E(G)−{ab}+{a, b, c}+e′) of total size meeting the greedy bound is a feasible
solution, where e′ = V + − c. Let us give the pseudocode of the modified version of
the Algorithm GREEDYCOVER that we have suggested.

Algorithm NEGAMODULAR_COVER
begin

INPUT A crossing negamodular function R : 2V → Z (given with an oracle)
that satisfies R(X) 6= 1 for any X ⊆ V , and a hypergraph H = (V, E) of rank at
most γ (where γ ≥ 3)
OUTPUT A hypergraph H ′ = (V, E ′) covering R − dH having smallest total size
and rank ≤ γ

1.1. Let q = R− dH and p = qs and find a minimal m ∈ C(p) ∩ ZV

1.2. Initialize H ′ = (V, ∅)
1.3. While there exists an admissible pair u, v do
1.4. Let m = m− χ(u)− χ(v) and p = p− d(V,{uv}) and H ′ = H ′ + uv
1.5. EndWhile
1.6. If m(V ) ≤ γ then let H ′ = H ′ + e where χe = m
1.7. Else (i.e. m(V ) = γ + 1)
1.8. If E(H ′) = ∅ then let E(H ′) = {ab, V + − b} with arbitrary a, b ∈ V +

1.9. Else
1.10. Let ab ∈ E(H ′) be arbitrary and c ∈ V + − x such that X(c) ∩ {a, b} = ∅

(where x ∈ V + is the special node given by Corollary 3 and Lemma 4)
1.11. Let E(H ′) = E(H ′)− ab+ {{a, b, c}, {V + − c}}
1.12. EndIf
1.13. EndIf
1.14. Output H ′ and STOP
end
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