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A conjecture on hypergraph orientation

Tamás Király?

Abstract

We propose a conjecture on the orientation of hypergraphs which have the
property that no hyperedge intersects minimally a regular family of sets. The
truth of the conjecture would imply that non-perfect graphs are not kernel-
solvable – the only known proof of which is based on the Strong Perfect Graph
Theorem. We show that the conjecture is true if the hypergraph contains a
connected graph.

Let H = (V, E) be a hypergraph. For Z ⊆ V , we introduce the following notation:

f(Z) := min{|X ∩ Z| : X ∈ E},
EZ := {X ∈ E : |X ∩ Z| = f(Z)}.

Let us propose the following conjecture.

Conjecture 1. Let H = (V, E) be a hypergraph. Suppose that ∩Z∈FEZ = ∅ for any
regular hypergraph (V,F) where V /∈ F . Then there is a function h : E → V such
that Z − h(EZ) 6= ∅ for every ∅ 6= Z ( V , where h(EZ) denotes

{v ∈ V : ∃X ∈ EZ , h(X) = v}.

The function h must satisfy h(X) ∈ X for every X ∈ E , since h(X) = v /∈ X would
mean that for Z = {v} we have X ∈ EZ and thus Z ⊆ h(EZ). In this light, h can be
interpreted as an assignment of a head to each hyperedge, so the conjecture concerns
the orientation of hypergraphs.

A kernel in a directed graph D = (V, E) is a stable set S with the property that
for every node u ∈ V − S there is an arc uv ∈ E with v ∈ S. A superorientation
of an undirected graph G = (V, E) is a directed graph obtained from G by replacing
each edge by an arc or two oppositely directed arcs. An undirected graph G =
(V, E) is kernel-solvable if every superorientation (D = V, A) either has a kernel
or there is a clique K such that D[K] does not have a kernel. Berge and Duchet
conjectured that kernel-solvable graphs are precisely the perfect graphs. The direction
that perfect graphs are kernel-solvable has been proved by Boros and Gurvich [1]. The
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opposite direction was settled with the proof of the Strong Perfect Graph Theorem
[2]. However, it is still interesting whether a proof that does not use the SPGT can
be found.

Our conjecture would imply that non-perfect graphs are not kernel solvable without
relying on the Strong Perfect Graph Theorem.

Proof. Let G = (V, E) be a minimally imperfect graph, and let H = (V, E) be the
hypergraph whose hyperedges are the complements of the stable sets of G. If (V,F)
is a regular hypergraph not having V as a hyperedge, then α(G[Z]) = χ(G[Z]) for
every Z ∈ F , but α(G) < χ(G), so for any stable set S there is a set Z ∈ F for
which S ∩Z is not a maximum stable set in Z. This means that the condition of the
conjecture holds.

Let h be the function given by the conjecture. For a stable set S, let vS = h(V −S).
Thus vS is a node not in S, and the following property holds:

For any clique K, there is a node uK ∈ K such that uK 6= vS if |K∩S| = 1.

Let D = (V, A) be the superorientation of G obtained by adding an arc uKv for
every clique K and every node v ∈ K. Clearly, D[K] has a kernel for every clique K.
We claim that D does not have a kernel. Indeed, for every stable set S, there is no
arc from vS to S, so S cannot be a kernel.

It is straightforward to see that the conjecture is true if E contains a singleton: in
this case EV = {{v} : v ∈ V }, since otherwise F = {u, V − u} for some {u} /∈ E
would violate the condition. Thus f(Z) = 0 for every Z ( V , so any function h with
the property h(X) ∈ X (X ∈ E) will work.

Theorem 2. The conjecture is true if E contains a connected graph.

Proof. In this case the hyperedge set EV is a connected graph on the node set V . Let
G denote this graph. First let us consider the case when G contains an odd cycle.

Case 1. G is non-bipartite.
Let C be an induced odd cycle in G. Our aim is to choose h(X) ∈ X for every

X ∈ E , in such a way that the required property holds for every ∅ 6= Z ( V .
Let us denote the nodes of C in cyclic order by u1, u2, . . . , uk. If X = {ui, ui+1},

then let h(X) = ui+1 (cyclically). If X ∈ E contains a node in V − V (C), then let
h(X) be such a node.

The rest of the hyperedges in E are subsets of V (C) of size at least 3 (since C is
an induced odd cycle of G). Let X be such a hyperedge. The nodes of X divide the
cycle C into paths and an odd number of paths have odd length. We have two cases
for the choice of h(X):

1. If there are at least 3 paths of odd length, then let h(X) be the node ui in X
which has the smallest index.

2. If there is exactly 1 path of odd length, then let h(X) be the node ui in X of
minimum index that is not the starting node (according to the cyclic order) of
the path of odd length.
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Suppose that Z is a nonempty proper subset of V . If there is a hyperedge in
E disjoint from Z, then f(Z) = 0, so the required property obviously holds for Z.
Therefore we can assume that Z intersects all hyperedges in E .

If f(Z) = 2, then Z would contain every element of V , since the graph G has no
isolated nodes. Therefore we can assume that f(Z) = 1.

We have to prove that there is an element z ∈ Z such that if z = h(X) for some
X ∈ E , then |Z∩X| > 1. Suppose for contradiction that this is not the case: for every
element z ∈ Z there is a hyperedge Xz ∈ E such that z = h(Xz) and |Z ∩XZ | = 1.
Let ui ∈ Z be the node with the largest index such that Xui

is not an edge of C.
Clearly such a node ui must exist: Z covers all edges of the odd cycle C, so it must
contain two consecutive nodes of the cycle (say uj−1, uj), and Xuj

cannot be an edge
of C, because the only possible edge is uj−1uj which intersects Z in two nodes.

We obtained that Xui
is a subset of V (C) that has at least 3 elements. We distin-

guish two cases.

1. Xui
defines at least 3 paths of odd length. Then ui is the node of Xui

with the
smallest index. By the choice of ui, Xuj

is an edge of C if uj ∈ Z and j > i.
This is only possible if the nodes ui, ui+1, . . . , uk are alternately in Z and not
in Z. But Xui

defines at least two odd paths on this part of the cycle, which
means that at least one node uj (j > i) is in Xui

∩ Z. Thus |Xui
∩ Z| ≥ 2,

contradicting the choice of Xui
.

2. Xui
defines exactly one path of odd length. Then ui may not be the node of

Xui
with the smallest index, but we know that there is at most one node with

smaller index, so there is at least one node with larger index. Furthermore, we
know that the path defined by ui and the next node of Xui

is an even path. By
the same argument as in the previous case, the nodes uj (j ≥ i) are alternately
in Z and not in Z. So the evenness of the path means that the node following
ui in Xui

is also in Z, hence |Xui
∩ Z| ≥ 2, contradicting the choice of Xui

.

We proved that any Z that does not satisfy the property in the conjecture must
contain all nodes in V , which completes the proof of the case when G is non-bipartite.

Case 2. G is bipartite.
Let the two colour classes of G be red and blue. The condition of the conjecture

implies that at least one class, say red, contains a hyperedge in E . For simplicity, we
call such hyperedges in E red hyperedges.

For every red hyperedge X, let us consider a Steiner tree of minimum size for X in
G. We choose one red hyperedge X0 for which this Steiner tree is of minimum size.
In addition, we choose a minimum size Steiner tree T0 for X0 that has the shortest
possible path between two leaves. Let these two leaves be v0 and v∗, and let P0 be
the path between v0 and v∗ in T0.

Claim 3. If X 6= X0 is a red hyperedge, then either X contains all leaves of T0, or
X contains a node in V − V (T0).

Proof. If X ⊆ V (T0) and it does not contain all leaves, then there is a Steiner tree for
X that is smaller than T0.
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Claim 4. If X ⊆ V (P0) is in E, then either X is an edge of P0, or |X| ≥ 3.

Proof. Otherwise there would be a Steiner tree for X0 that has the same size as T0

and has a shorter path between two leaves.

We use the tree T0 and the path P0 to define h(X) for every X ∈ E .

• Let h(X0) = v0.

• If X ∈ E is an edge of T0, then let h(X) be the node further away from v0.

• If X − V (T0) 6= ∅, then let h(X) be an arbitrary node in X − V (T0).

• If X ⊆ V (T0) is a red hyperedge that contains all leaves, then let h(X) = v0.

• If X ⊆ V (T0) is not an edge of T0, and X has a blue node v /∈ V (P0), then let
h(X) = v.

• If X ⊆ V (T0) is not an edge of T0, all blue nodes of X are on the path P0, and
X has a red node v /∈ V (P0), then let h(X) = v.

• If X ⊆ V (P0), and |X| ≥ 3, then let h(X) be the node of X closest to v0 for
which X has another node of the same colour.

To prove the theorem, we consider a set Z for which Z − h(EZ) = ∅, and show some
properties which lead to a contradiction. As in the non-bipartite case, it is enough to
consider sets with f(Z) = 1.

Claim 5. Suppose that Z−h(EZ) = ∅ for a set ∅ 6= Z ( V . Then Z ∩V (P0) consists
of the blue nodes of P0.

Proof. Since Z contains at least one node of every edge of the path P0, it suffices to
prove that Z does not contain a red node in V (P0). Let us denote the nodes of the
path P0 by v0, v1, . . . , vk = v∗. First we show that if vi ∈ Z, X ∈ EZ and h(X) = vi,
then either X is an edge of P0, or i = 0 and X is a red hyperedge containing all
leaves of T0. Indeed, the only other possibility is that X ⊆ V (P0) and |X| ≥ 3; if that
occurs, let us choose such a vi and X with i maximal. This choice implies that the
nodes vi, vi+1, . . . , vk are alternatingly in Z and not in Z. But by the choice of h(X),
X contains a node of the same colour as vi which has higher index, which means that
this node is also in Z. Thus |X ∩ Z| ≥ 2, which contradicts X ∈ EZ .

If vi ∈ Z for some i > 0, the above implies that {vi−1, vi} ∈ EZ , so vi−1 /∈ Z. This
means that Z either contains all blue nodes of P0 or it contains all red nodes of P0.
But the latter is impossible: it would contain both v0 and v∗ that are both leaves of
T0, thus |X ∩Z| ≥ 2 would hold for every red set containing all leaves of T0, so there
would be no X ∈ EZ for which h(X) = v0.

Since Z ∩ X0 6= ∅, Z must contain a red node that is not in V (P0). Let vr be a
red node in Z that is closest to v0 in T0. There is a hyperedge X ∈ EZ for which
h(X) = vr. We distinguish two cases.
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• If X is an edge vvr of T0: there is an edge uv on the path from v0 to v in T0,
where u is red and v is blue. Since |X ∩ Z| = 1, we know that v /∈ Z, but this
means that u ∈ Z since {u, v} ∩ Z 6= ∅. But this is a contradiction, since u is
closer to v0 than vr.

• If X is not an edge of T0: we know that X has a blue node v on the path
P0, otherwise h(X) cannot be vr. But then v ∈ X ∩ Z and vr ∈ X ∩ Z, so
|X ∩ Z| ≥ 2, which contradicts X ∈ EZ .

This contradiction proves that the set Z does not exist.

Remark. In a previous version of the paper, we proposed the following conjecture:

Conjecture 6. Let H = (V, E) be a hypergraph. Suppose that EZ ∩ EV−Z = ∅ for
every ∅ 6= Z ( V . Then there is a function h : E → V such that Z − h(EZ) 6= ∅ for
every ∅ 6= Z ( V .

It turned out that this conjecture is false. The counterexample is the hypergraph
H = (V, E) where |V | = 6 and E = {123, 345, 561, 246, 14, 25, 36}.
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