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A note on degree-constrained subgraphs

András Frank?, Lap Chi Lau??, Jácint Szabó∗

Abstract

Elementary proofs are presented for two graph theoretic results, originally
proved by H. Shirazi and J. Verstraëte using the combinatorial Nullstellensatz.

In an undirected graph G = (V, E) we denote by dG(v) the degree of v ∈ V . If
F (v) ⊆ N is a set of forbidden degrees for every v ∈ V , then a subgraph G′ = (V, E ′)
of G is called F -avoiding if dG′(v) /∈ F (v) for all v ∈ V .

Theorem 1 (Shirazi, Verstraëte [5]). If G = (V, E) is an undirected graph and

|F (v)| ≤ dG(v)/2 for every node v, (1)

then G has an F -avoiding subgraph.

Theorem 1 appeared first under the name ’Louigi’s conjecture’ in [1]. A version
with dG(v)/2 replaced by dG(v)/12 was given in [1], while dG(v)/8 was proved in [2].
Louigi’s conjecture was first settled in the affirmative by H. Shirazi and J. Verstraëte
[5]. Their proof is based on the combinatorial Nullstellensatz of N. Alon [3]. Below
we give an elementary proof.

Proof. It is well-known that every undirected graph G has an orientation D = (V,
−→
E )

in which
%D(v) ≥ bdG(v)/2c for every node v, (2)

where %D(v) denotes the in-degree of v. Indeed, by adding a new node z to G and
joining z to every node of G with odd degree, we obtain a graph G+ in which every
degree is even. Hence G+ decomposes into edge-disjoint circuits and therefore it has an
orientation in which the in-degree of every node equals its out-degree. The restriction
of this orientation to G satisfies (2). (An orientation with property (2) is also used in
[5].) Therefore the following result implies Theorem 1.
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Theorem 2. If G = (V, E) is an undirected graph and it has an orientation D for
which %D(v) ≥ |F (v)| for every node v, then G has an F -avoiding subgraph.

Proof. For an undirected edge e, let −→e denote the corresponding directed edge of D.
We use induction on the number of edges. If 0 is not a forbidden degree at any node,
then the empty subgraph (V, ∅) is F -avoiding. Suppose that 0 ∈ F (t) for a node t.
Then %D(t) ≥ |F (t)| ≥ 1 and hence there is an edge e = st of G for which −→e is
directed toward t. Let G− = G − e and D− = D − −→e . Define F− as follows. Let
F−(t) = {i−1 : i ∈ F (t)\{0}}, F−(s) = {i−1 : i ∈ F (s)\{0}}, and for z ∈ V −{s, t}
let F−(z) = F (z). Since |F−(t)| = |F (t)|− 1, %D−(v) ≥ |F−(v)| holds for every node
v. By induction, there is an F−-avoiding subgraph G′′ of G−. By the construction of
F−, the subgraph G′ := G′′ + e of G is F -avoiding.

S. L. Hakimi [4] proved that, given a function f : V → Z+, an undirected graph
G has an orientation for which %(v) ≥ f(v) for every node v if and only if eG(X) ≥∑

[f(v) : v ∈ X] holds for every subset X ⊆ V where eG(X) denotes the number
of edges with at least one end-node in X. By combining this with Theorem 2, one
obtains the following.

Corollary 3. If G = (V, E) is an undirected graph and eG(X) ≥
∑

[|F (v)| : v ∈ X]
holds for every subset X ⊆ V , then G has an F -avoiding subgraph.

Along with Theorem 1, the following result was also proved in [5] via the Combi-
natorial Nullstellensatz. A graph is called empty if it has no edges.

Theorem 4 (Shirazi, Verstraëte [5]). If G = (V, E) is an undirected graph, 0 /∈
F (v) for all v ∈ V and

∑
v∈V |F (v)| < |E|, then G has a nonempty F -avoiding

subgraph G′.

Proof. Again, we use induction on the number of edges. If dG(v) /∈ F (v) for all
v ∈ V , then the nonempty G′ = G will do. Otherwise there exists a node t ∈ V where
dG(t) ∈ F (t). As 0 /∈ F (v), there is an edge e of G incident to t. Let G− = G− e, let
F−(t) = F (t) \ {dG(t)} and for z ∈ V − {t} let F−(z) = F (z). By induction, there
is a nonempty F−-avoiding subgraph G′ of G−. As dG′(t) < dG(t), this G′ is even
F -avoiding.

We remark that Theorems 2 and 4 clearly hold for hypergraphs, as well, with the
same proofs. Combining this with the hypergraph variant of Hakimi’s theorem, one
concludes that also Corollary 3 applies to hypergraphs. However, in Theorem 1 one
should replace 2 by the rank of the hypergraph (i.e. by maximum size of a hyperedge).
This is already observed by Shirazi and Verstraëte [5]. Note also that both proofs give
rise to polynomial algorithms, which were not known before.
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