A note on making two bipartite graphs perfectly matchable

Júlia Pap

The following is a special case of a yet unpublished theorem of A. Frank:
Theorem 1 (A. Frank, [1]). Let $G_{1}=\left(U, V, E_{1}\right)$ and $G_{2}=\left(U, V, E_{2}\right)$ be two bipartite graphs on the same bipartition (U, V), where $|U|=|V|$. The minimal cardinality of an edge set E such that both $E_{1} \cup E$ and $E_{2} \cup E$ contain a perfect matching equals the maximum of

$$
\max _{X_{1}, X_{2} \subseteq U, X_{1} \cap X_{2}=\emptyset} \operatorname{def}_{1}\left(X_{1}\right)+\operatorname{def}_{2}\left(X_{2}\right)
$$

and

$$
\max _{Y_{1}, Y_{2} \subseteq V, Y_{1} \cap Y_{2}=\emptyset} \operatorname{def}_{1}\left(Y_{1}\right)+\operatorname{def}_{2}\left(Y_{2}\right),
$$

where $\operatorname{def}_{i}(X)=|X|-\left|\Gamma_{i}(X)\right|$ (the deficiency of X), and $\Gamma_{i}(X)$ is the neighborhood of X in G_{i}.

The contribution of this note is a new proof for this theorem which reduces it to the matroid intersection theorem. For background on matroids see e.g. Schrijver [2].

Proof. The min \geq max direction is easy.
To prove the other direction we have to find an edge set E of cardinality equal to the maximum above, which has the property that both $E_{1} \cup E$ and $E_{2} \cup E$ contain a perfect matching.

Let M_{U}^{1} be the dual of the transversal matroid on the ground set U defined by G_{1}, and let us define M_{V}^{1}, M_{U}^{2} and M_{V}^{2} analogously. So if we consider only G_{1}, the minimal cardinality edge sets with which G_{1} contains a perfect matching are exactly the following: we take a base X of M_{U}^{1} and a base Y of M_{V}^{1} and match them arbitrarily.

Let us denote the set of the bases in a matroid M by $\mathcal{B}(M)$.
If $X_{1} \in \mathcal{B}\left(M_{U}^{1}\right), X_{2} \in \mathcal{B}\left(M_{U}^{2}\right), Y_{1} \in \mathcal{B}\left(M_{V}^{1}\right)$ and $Y_{2} \in \mathcal{B}\left(M_{V}^{2}\right)$, then there exists a set of edges of cardinality $\max \left(\left|X_{1} \cup X_{2}\right|,\left|Y_{1} \cup Y_{2}\right|\right)$ with the required property. To find such an edge set we have to match the smaller set of $X_{1} \cap X_{2}$ and $Y_{1} \cap Y_{2}$ into the bigger one, and extend these to a matching between X_{1} and Y_{1} and between X_{2} and Y_{2}. So the minimum size of the above construction is the maximum of $\min \left\{\left|X_{1} \cup X_{2}\right|\right.$: $\left.X_{1} \in \mathcal{B}\left(M_{U}^{1}\right), X_{2} \in \mathcal{B}\left(M_{U}^{2}\right)\right\}$ and $\min \left\{\left|Y_{1} \cup Y_{2}\right|: Y_{1} \in \mathcal{B}\left(M_{V}^{1}\right), Y_{2} \in \mathcal{B}\left(M_{V}^{2}\right)\right\}$.

Let r_{1} and r_{2} be the rank functions of the transversal matroids on U defined by G_{1} and G_{2} respectively. Then $r_{1}(X)=|X|-\max _{Z \subseteq X} \operatorname{def}_{1}(Z)$ and $r_{2}(X)=|X|-$ $\max _{Z \subseteq X} \operatorname{def}_{2}(Z)$ for every $X \subseteq U$. So with use of the matroid intersection theorem we get

$$
\begin{aligned}
\min & \left\{\left|X_{1} \cup X_{2}\right|: X_{1} \in \mathcal{B}\left(M_{U}^{1}\right), X_{2} \in \mathcal{B}\left(M_{U}^{2}\right)\right\} \\
& =|U|-\max \left\{\left|Z_{1} \cap Z_{2}\right|: U \backslash Z_{1} \in \mathcal{B}\left(M_{U}^{1}\right), U \backslash Z_{2} \in \mathcal{B}\left(M_{U}^{2}\right)\right\} \\
& =|U|-\min \left\{r_{1}\left(U_{1}\right)+r_{2}\left(U_{2}\right): U_{1} \dot{\cup} U_{2}=U\right\} \\
& =|U|-\min \left\{\left|U_{1}\right|-\max _{Z_{1} \subseteq U_{1}} \operatorname{def}_{1}\left(Z_{1}\right)+\left|U_{2}\right|-\max _{Z_{2} \subseteq U_{2}} \operatorname{def}_{2}\left(Z_{2}\right): U_{1} \dot{\cup} U_{2}=U\right\} \\
& =\max \left\{\operatorname{def}_{1}\left(Z_{1}\right)+\operatorname{def}_{2}\left(Z_{2}\right): Z_{1}, Z_{2} \subseteq U, Z_{1} \cap Z_{2}=\emptyset\right\} .
\end{aligned}
$$

Similarly the same holds for V and thus the theorem follows.

References

[1] A. Frank: personal communication
[2] A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency, SpringerVerlag, 2003

