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Matroid intersection for the min-rank oracle

Mihály Bárász

Abstract

We present a modification of the matroid intersection algorithm for the case when the two
matroids are not given explicitly, but only a minimum rank oracle is available. That is for any
set we can determine only the minimum of the two ranks.

One may be interested how general is the well-known matroid intersection algorithm? Is it possible
to extend it to more abstract frameworks or to some weaker conditions? And a natural example of
such weaker conditions is this framework, when we can only ask from the oracle what is the smaller
of the two ranks of a given set. This framework allows us to define the problem:

Definition 1. Consider two matroids M1 and M2 on a common ground set S. Let r1 and r2

be the corresponding rank functions and r? := min(r1, r2) (that is r?(X) := min(r1(X), r2(X)) for
every X ⊆ S). We will call a set X ⊆ S independent iff it is independent in both matroids, that is
r?(X) = |X|.

With this notation the matroid intersection problem can be formulated as follows: find a subset X
of S for which r?(X) = |X| and |X| is maximum. It is also easy to formulate the min-max theorem
for the matroid intersection in this framework. Let us recall the min-max theorem in the classical
form:

Theorem 2 (see [1]). Maximum size of a common independent set is equal to

min
U⊆S

(r1(U) + r2(S − U)).

It is clear that for any independent set F and any subset U of S:

|F | = |F ∩ U |+ |F − U | ≤ r?(U) + r?(S − U) ≤ r1(U) + r2(S − U)

So using the above theorem we get the following:

Theorem 3. Maximum size of a common independent set:

max
r?(F )=|F |

|F | = min
U⊆S

(r?(U) + r?(S − U))

Thus, the problem of finding a maximum cardinality independent set by using only our restricted
oracle lies in NP∩ co-NP. We now present a polynomial time algorithm solving this problem. Our
algorithm is a simple extension of the augmenting path algorithm first given by Aigner and Dowling
[1971] and Lawler [1975]. For detailed description see [1] Section 41.2.

The algorithm works by starting with some common independent set I (the empty set, for example)
and then succeedingly finding a common independent set of bigger cardinality by finding augmenting
paths in auxiliary graphs.
Common independent set augmenting algorithm

input: matroids M1 and M2 given by rank-minimum oracle r?, and an independent set I.

output: an independent set I ′ with |I ′| > |I| if exists (positive answer), or set U with |I∩U | = r?(U)
and |I − U | = r?(S − U) otherwise (negative answer).
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Consider three different cases:

Case 1: There exists an x ∈ S − I st. r?(I + x) > r?(I). Then I ′ = I + x is a bigger independent
set. Output I ′.

Case 2: There are no two elements x, y ∈ S − I st. r?(I ∪ {x, y}) > r?(I). Then it is clear that I is
a basis in M1 or M2. (Otherwise it could be extended with some x in M1 and some y in M2 and
I ∪ {x, y} would have bigger rank in both). That is |I| = r?(S). So the answer is negative, output
U = S.

Case 3: There is no element x for which r?(I + x) > |I|, but there is some pair of elements x, y for
which r?(I+x+y) > |I|. Denote by A = {x ∈ S−I : r1(I+x) > |I|} and B = {y ∈ S−I : r2(I+y) >
|I|}. It is clear that in this case A and B are disjoint and nonempty. Moreover r?(I +x+ y) > |I| iff
x ∈ A and y ∈ B or vice versa. So by querying r?(I + x + y) for every x, y ∈ S we can decide which
of the cases apply and determine sets A and B in this case (but not which of the sets is which).
Determining the circuits.

Let |I| = r?(I) = k. Consider an element x ∈ A. For arbitrary y ∈ I r1(I +x−y) ≥ k+1−1 = k.
So r?(I + x− y) < k iff y is not an element of the x’s fundamental circuit CM2(x, I). The similar is
true for x ∈ B: r?(I + x− y) < r?(I) ⇐⇒ y /∈ CM1(x, I).

For the elements of S − I − A − B we do the following. We choose an arbitrary element a ∈ A
and b ∈ B. For x ∈ S − I −A−B:

r1(I + a + x) = r1(I) + 1 = k + 1,

r2(I + a + x) = r2(I) = k.

Now, for y ∈ I we get r?(I + a + x− y) < r?(I) iff r2(I + a + x− y) < k = r2(I + a + x), that is
y /∈ CM2(a, I) ∪ CM2(x, I). So we can compute this set CM2(x, I) ∪ CM2(a, I) and will call it the
modified fundamental circuit of x in the second matroid. Similarly, by querying r?(I + b + x − y)
for all y ∈ I we can compute CM1(x, I) ∪ CM1(b, I), the modified fundamental circuit in the first
matroid.
Auxiliary graph.

Let us construct the auxiliary graph in the same way as in the original matroid intersection
algorithm, only using the modified fundamental circuits. For every x ∈ S− I−A we draw a directed
arc from every element of its (modified) fundamental circuit in M1 to x. And for every x ∈ S−I−B
we put an arc from x to every element of its (modified) fundamental circuit in M2.

This modified auxiliary graph is as good for the purpose of the algorithm as the original one. The
main observation is that a shortest path from A to B cannot use a arc which is not in the original
auxiliary graph. Suppose on the contrary, that a path uses an xy arc, where x ∈ S − I −A−B and
y ∈ CM2(a, I) (and not CM2(x, I)), then this path can be shortened if we start it right with ay arc.
Similarly for “false” arcs from M2.

So with the modified auxiliary graph in the same way as with the original one we can either
improve on I, or can show a splitting of S which shows optimality. (Observe for this the set of
element reachable from A is the same in the modified auxiliary graph and the original. The argument
is similar to that in the previous paragraph.)
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