
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H–1117,
Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Matchings under distance
constraints II.

Péter Madarasi

November 27, 2023

Matchings under distance constraints II.

Péter Madarasi?

Abstract

This paper introduces the d-distance b-matching problem, in which we are
given a bipartite graph G = (S, T ;E) with S = {s1, . . . , sn}, a weight function
on the edges, an integer d ∈ Z+ and a degree bound function b : S ∪ T → Z+.
The goal is to find a maximum-weight subset M ⊆ E of the edges satisfying the
following two conditions: 1) the degree of each node v ∈ S ∪ T is at most b(v)
in M , 2) if sit, sjt ∈ M , then |i − j| ≥ d. In the cyclic version of the problem,
the nodes in S are considered to be in cyclic order. We get back the (cyclic)
d-distance matching problem when b(s) = 1 for s ∈ S and b(t) =∞ for t ∈ T .

We prove that the d-distance matching problem is APX-hard, even in the
unweighted case. We show that (2 − 1

d) is a tight upper bound on the inte-
grality gap of the natural integer programming model for the cyclic d-distance
b-matching problem provided that (2d − 1) divides the size of S. For the non-
cyclic case, the integrality gap is shown to be at most (2 − 2

d). The proofs
give approximation algorithms with guarantees matching these bounds, and
also improve the best known algorithms for the (cyclic) d-distance matching
problem.

In a related problem, our goal is to find a permutation of S maximizing the
weight of the optimal d-distance b-matching. This problem can be solved in
polynomial time for the (cyclic) d-distance matching problem — even though
the (cyclic) d-distance matching problem itself is NP-hard and also hard to
approximate arbitrarily. For (cyclic) d-distance b-matchings, however, we prove
that finding the best permutation is NP-hard, even if b ≡ 2 or d = 2, and we
give e-approximation algorithms.

?Department of Operations Research, ELTE Eötvös Loránd University and the HUN-REN–ELTE
Egerváry Research Group on Combinatorial Optimization, Pázmány Péter sétány 1/C, 1117 Bu-
dapest, Hungary. madarasip@staff.elte.hu

Section 1. Introduction 2

1 Introduction

In this paper, we introduce a natural generalization of the d-distance matching prob-
lem [1], where the degree upper bound function in S can be other than the all-one
function, and degree bounds can be posed on the nodes in T as well. Given a bipartite
graph G = (S, T ;E) with S = {s1, . . . , sn}, a positive integer d ∈ N and a function
b : S ∪ T → Z+, an edge set M ⊆ E is called d-distance b-matching if 1) the degree
of each node v ∈ S ∪ T is at most b(v) in M and 2) if sit, sjt ∈ M for i 6= j, then
|i− j| ≥ d. A d-distance b-matching is called perfect if the degree of each node s ∈ S
is exactly b(s). In the cyclic version of the problem, the nodes in S are considered to
be in a cyclic order, and 2) is required cyclically, that is, if sit, sjt ∈M for i 6= j, then
both |i− j| ≥ d and |i− j| ≤ n− d must hold.

In the (cyclic) d-distance b-matching problem, the goal is to find a maximum-weight
(cyclic) d-distance b-matching for a given weight function w : E → R. The special
case w ≡ 1 is referred to as the unweighted problem. Note that the special case when
b(v) = 1 if v ∈ S and ∞ if v ∈ T is the d-distance matching problem, which was
introduced in an earlier article from the same author [1].

The (perfect) d-distance b-matching problem is not only a natural problem extend-
ing the literature of matchings, but it also appears in several applications, which are
natural extensions of the situations in which the d-distance matching problem could
be applied, see [1]. For example, imagine n consecutive all-day events s1, . . . , sn, each
of which must be assigned b(si) of watchmen t1, . . . , tk. For each event si, a set of
possible watchmen is given — those who are qualified to be on guard at event si.
Appoint exactly b(si) watchmen to event si such that no watchman is assigned to
more than one of any d consecutive events, where d ∈ N is given, and each watchman
tj is on guard at most b(tj) events. In the weighted version of the problem, let wsitj
denote the level of safety of event si if watchman tj is on watch, and the objective is
to maximize the level of overall safety.

As another application of the above question, consider n items s1, . . . , sn one after
another on a conveyor belt, and k machines t1, . . . , tk. Each item si is to be processed
on the conveyor belt by b(si) of the qualified machines N(si) ⊆ {t1, . . . , tn} such that
if a machine processes item si, then it cannot process any of the next (d − 1) items
— because the conveyor belt is running.

Previous work In the special case d = |S|, one gets the classic b-matching problem
in bipartite graphs. For d = 1, the problem reduces to the b-matching problem in
bipartite graphs, and we will see that it is a special case of the circulation problem
for d = 2.

A feasible d-distance b-matching M can be thought of as a b-matching that does
not contain the edge set {sit, sjt} for any t ∈ T and |i− j| ≤ d. A similar problem is
the Kp,p-free p-matching problem [2]. Here one is given an arbitrary family T of the
subgraphs of G isomorphic with Kp,p, and the goal is to find a maximum-cardinality b-
matching which does not induce any subgraph in T , where b : S∪T → {0, . . . , p}. This
problem can be solved in polynomial time. Note that in the d-distance b-matching
problem, b is arbitrary and the type of the forbidden subgraphs is K2,1. Another

EGRES Technical Report No.

Section 1. Introduction 3

similar problem is the following. Given a partition E1, . . . , Ek of E and positive
integers r1, . . . , rk, find a perfect matching M for which |M ∩Ei| ≤ ri. The problem is
introduced and shown to be NP-complete in [3]. Note that the side constraints in the
distance matching problem are similar, but the degree constraints are different and
our edge sets do not form a partition of E. Several other versions of the “restricted”
(b-)matching problem have been introduced, for example in [4, 5, 6, 7].

The perfect d-distance matching problem is a special case of the list-coloring prob-
lem on interval graphs [8] and also of the frequency assignment problem [9], as it was
shown in [1].

The d-distance matching problem was shown to be NP-hard and an FPT algorithm
parameterized by d was given in [1]. An efficient algorithm was also described for
the case when the size of T is a constant. A (2 − 1

2d−1
)-approximation algorithm

for the weighted d-distance matching problem was given, which also implies that the
integrality gap of the natural IP model is at most this value. We also gave a (3/2+ε)-
approximation algorithm for any constant ε > 0 in the unweighted case.

Our results We investigate the integrality gap of the natural IP model and give
approximation algorithms for the (cyclic) d-distance b-matching problem in Section 2.
In particular, we show that (2− 1

d
) is a tight upper bound on the integrality gap in the

cyclic case provided that (2d−1) divides the size of S. Concerning the non-cyclic case,
the integrality gap is shown to be at most (2 − 2

d
) for d ≥ 2. In addition, the proofs

provide approximation algorithms with approximation factors matching the bounds
above, further improving the algorithms for the (cyclic) d-distance matching problem
given in an earlier article [1]. As a special case, this further improves the bound on
the integrality gap and the approximation factor for the d-distance matching problem
from (2− 1

2d−1
) to (2− 2

d
).

Answering an open question from [1], Section 3 proves that the (cyclic) d-distance
matching problem is APX-hard, even in the unweighted case.

In Section 4, motivated by the second application mentioned above, a different
aspect of the problem is considered, in which our goal is to find a permutation of
S maximizing the weight of the optimal d-distance b-matching. We prove that a
permutation of S maximizing the weight of the optimal d-distance matching can be
found in polynomial time — even though the (cyclic) d-distance matching problem
itself is NP-hard and also hard to approximate arbitrarily. For (cyclic) d-distance
b-matchings, however, we prove that finding the best permutation is NP-hard, even
when b(s) = 2 for all s ∈ S or d = 2, and we give e-approximation algorithms for
both the cyclic and the non-cyclic cases.

Notation Throughout the paper, assume that G = (S, T ;E) is a bipartite graph
without loops or parallel edges, unless stated otherwise. Let ∆(v) and N(v) denote
the set of edges incident to node v and the neighbors of v, respectively. For a subset
X ⊆ E of the edges, NX(v) denotes the neighbors of v for edge set X. We use
deg(v) to denote the degree of node v. Let Ld(si) and Rd(si) denote the nodes in
the interval of length (at most) d ending and starting at si, respectively, that is,

EGRES Technical Report No.

Section 2. Integrality gap and approximation algorithms 4

Ld(si) = {smax(i−d+1,1), . . . , si} and Rd(si) = {si, . . . , smin(i+d−1,|S|)}. In the cyclic
case, Ld(si) = {si−d+1, . . . , si} and Rd(si) = {si, . . . , si+d−1}, where the indices are
taken modulo |S|. By definition, the minimum and the maximum of the empty set
are ∞ and −∞, respectively. Given a function f : A → B, both f(a) and fa denote
the value f assigns to a ∈ A, and let f(X) =

∑
a∈X f(a) for X ⊆ A. Let χZ denote

the characteristic vector of set Z, that is, χZ(y) = 1 if y ∈ Z, and 0 otherwise.
Occasionally, the braces around sets consisting of a single element are omitted, for
example χe = χ{e} for e ∈ E. Let N and Z+ denote the set of positive and non-negative
integers, respectively.

2 Integrality gap and approximation algorithms

In this section, we prove that (2 − 1
d
) is a tight upper bound on the integrality gap

of the natural IP model of the d-distance b-matching problem provided that the size
of S is divisible by (2d − 1). Then, we show that (2 − 2

d
) is an upper bound on the

integrality gap of the non-cyclic version for d ≥ 2 — without any restriction on the
size of S. The proofs also give two approximation algorithms with approximation
factors matching the bounds above.

Consider the following LP-relaxation of the natural IP model for the weighted d-
distance b-matching problem.

max
∑
e∈E

wexe (LP1)

s.t.

x ∈ RE+ (1a)∑
e∈∆(v)

xe ≤ b(v) ∀v ∈ S ∪ T (1b)

∑
st∈∆(t)
s∈Rd(si)

xst ≤ 1 ∀t ∈ T ∀i ∈ {1, . . . , n− d}. (1c)

The LP model for the cyclic case consists of the same conditions but (1c) is required
for all t ∈ T and for all i ∈ {1, . . . , n}. This model will be denoted by (LP1’). When
b(s) = 1 for all s ∈ S and b(t) = ∞ for all t ∈ T , the integer solutions to (LP1)
correspond to the feasible d-distance matchings, and we get back the linear program
investigated in [1].

The following theorem gives an upper bound on the integrality gap for the cyclic
d-distance b-matching problem.

Theorem 2.1. If (2d − 1) divides |S|, then the integrality gap of (LP1’) for the
weighted cyclic d-distance b-matching problem is at most (2 − 1

d
), and this bound is

tight. Furthermore, there exists a polynomial-time approximation algorithm with the
same guarantee.

EGRES Technical Report No.

Section 2. Integrality gap and approximation algorithms 5

Proof. For every i ∈ {1, . . . , 2d − 1}, let Si ⊆ S denote the union of the sets
Rd(si+q(2d−1)) for q ∈ {0, . . . , n

2d−1
− 1}. Since the size of S is divisible by (2d − 1),

the nodes in Si form intervals of length d in s1, . . . , sn and each of these intervals
is followed by (d − 1) nodes of S \ Si cyclically. For each i ∈ {1, . . . , 2d − 1}, let
Gi = (S, T ;Ei) be the subgraph of G on the node set of G whose edge set Ei consists
of the edges induced by Si and T .

First, we prove that the polytope given by (LP1’) for Gi is the convex hull of its
integer solutions. Observe that constraints (1c) need to be required only for those
intervals that are fully included in Si, because these immediately imply that the
constraints hold for the rest of the intervals. The matrix of this reduced linear program
is the transpose of the incidence matrices of two laminar families written under each
other, which is a well-known network matrix, and the right-hand side is integer, hence
the polytope is integer [10, Page 152].

Next, we prove the bound on the integrality gap. Let Mi denote a maximum-
weight cyclic d-distance b-matching in Gi, and let M be a maximum-weight solution
among M1, . . . ,M2d−1. Let x ∈ RE+ be an optimal LP solution for G and let M∗ be a
maximum-weight d-distance b-matching. It is easy to see that all edges of G appear
in exactly d of the graphs G1, . . . , G2d−1, which means that

wx =
∑
e∈E

wexe =
1

d

2d−1∑
i=1

∑
e∈Ei

wexe

holds. Restricting an optimal LP solution for G to the edge set of Gi, a feasible LP
solution is obtained for Gi, so the objective value of this restricted solution can be
bounded from above by the LP optimum for Gi, which is equal to the IP optimum
w(Mi). From these, one gets that

wx ≤ 1

d

2d−1∑
i=1

w(Mi) ≤
2d− 1

d
w(M) ≤ 2d− 1

d
w(M∗), (2)

since M is a feasible integer solution for G. This means that the integrality gap is at
most (2− 1

d
), which was to be proven.

Next, we give a tight example for every d ∈ N. Let G = (S, T ;E) be a complete
bipartite graph, where S = {s1, . . . , s2d−1} and T = {t}. Let b(s) = 1 for all s ∈ S,
and let b(t) = ∞. For w ≡ 1, the IP optimum is 1, and x ≡ 1

d
is an optimal LP

solution, meaning that the LP optimum is (2− 1
d
), hence the bound above is tight.

In fact, this proof shows that M is a (2 − 1
d
)-approximate solution, which can be

found in polynomial time by solving (LP1’) [11] for every graph Gi, therefore we also
obtain an approximation algorithm for those instances of the maximum-weight cyclic
d-distance b-matching problem in which (2d− 1)|n, which completes the proof.

The next theorem improves this upper bound in the non-cyclic case when b(t) =∞
for all t ∈ T . As a special case, this also improves the best known upper bound on
the integrality gap for the non-cyclic d-distance matching problem from (2− 1

2d−1
) [1]

to (2− 2
d
).

EGRES Technical Report No.

Section 2. Integrality gap and approximation algorithms 6

Theorem 2.2. Let b : S ∪ T → Z+ be such that b(t) = ∞ for all t ∈ T , and let
d ≥ 2. The integrality gap of (LP1) for the weighted d-distance b-matching problem is
at most (2− 2

d
). Furthermore, there exists a polynomial-time approximation algorithm

with the same guarantee.

Proof. Let G = (S, T ;E) be a bipartite graph, where S = {s1, . . . , sn}, and let d ∈ N
and w : E → R+. If (2d− 2) - n, then add (2d− 2− r) new isolated nodes to the end
of S, where r is such that 0 < r < 2d−2 and n = k(2d−2)+ r for some k ∈ Z+. This
leaves the feasible d-distance b-matchings in G unchanged, therefore one can assume
without loss of generality that (2d− 2)|n.

We proceed similarly to the first part of the proof of Theorem 2.1, but now we leave
out only (d− 2) consecutive nodes — instead of (d− 1) — between disjoint intervals
of length d of S. That is, let Si ⊆ S denote the union of the sets Rd(si+q(2d−2)) for
q ∈ {0, . . . , n

2d−2
− 1}, where i ∈ {1, . . . , 2d − 2} and Rd is to be taken in the cyclic

sense. Let Ei consist of the edges induced by Si and T , and let Gi = (S, T ;Ei) for
i ∈ {1, . . . , 2d− 2}. Just as in the proof of Theorem 2.1, we prove that the polytope
defined by (LP1) is integer for Gi.

Claim 2.3. For each i ∈ {1, . . . , 2d− 2}, the polytope defined by (LP1) is integer for
the subgraph Gi.

Proof. Without loss of generality, we can assume that G is a complete bipartite graph,
and hence the edge set of Gi is the complete graph between Si and T . Notice that (1b)
is required only for s ∈ Si, and (1c) only for the intervals of S contained in Si and
for the intervals of length d containing the last and the first nodes in two consecutive
intervals in Si, since the rest of the constraints are redundant. It suffices to prove that
the matrix of this reduced (LP1) is a network matrix [10, Page 152]. Fix an arbitrary
order t1, . . . , tk of the nodes in T . The columns of the matrix of the program, that
is the variables, are ordered as follows. Let the columns corresponding to the edges
incident to tj form an interval for all j ∈ {1, . . . , k}, which appear in the order given
by t1, . . . , tk, and for each tj, sort the interval of the edges incident to tj by the index of
their endpoint in S. Assume that the rows corresponding to constraints (1c) appear
first, in lexicographical order, and then the rows corresponding to constraints (1b)
follow, also in lexicographical order. Let L denote the matrix obtained this way,
and let Bt denote the submatrix of L given by the edges incident to t and by the
constraints (1c) for t. By construction,

Bt =



1 . . . 1
1 1

1 . . . 1
1 1

. . .

1 1
1 . . . 1


,

where the zero entries are omitted, and each row contains either two or d one entries.
The lines correspond to constraints (1c) alternately for an interval of Si and for the

EGRES Technical Report No.

Section 2. Integrality gap and approximation algorithms 7

interval containing the last and the first node of two consecutive intervals in Si. For
every t ∈ T , there is one such block Bt in L placed diagonally. Furthermore, the rows
corresponding to constraints (1b) give k identity matrices side by side, one under each
Bt, that is, L looks as follows.

L =



[
Bt1

] [
Bt2

]
. . . [

Btk

]
[
I
] [

I
]

. . .
[
I
]


Now, we prove that L is a network matrix. Note that each column of L contains
either two or three ones. First, consider the submatrix L′ formed by the columns
of L containing exactly three ones — we will handle the rest of the columns later.
Deleting the full-zero rows from the matrix L′, which were created by deleting some
of the columns from L, we get that

L′ =



[
At1
] [

At2
]

. . . [
Atk
]

[
I
] [

I
]

. . .
[
I
]


, where At =



1
1 1

1 1
. . .

1 1
1


for each t ∈ T .

We prove that L′ is a network matrix. Denote the size of the identity matrices
in the last rows of L′ by m. Then each block At consists of (m + 1) rows and m
columns. Let M ′ denote the submatrix given by the last m rows of L′, that is, the
identity matrices. Let the tree F be a path P with m (undirected) edges f1, . . . , fm,
which will correspond to the rows of M ′. The orientation of these edges will be given
later. For each node of the path P , add k new leaves connected to that node. Let
ei1, . . . , e

i
k denote those newly added leaf edges which are incident to the ith node of P

for i ∈ {1, . . . ,m+ 1}. Let edge eij correspond to the ((m+ 1)(j − 1) + i)th row of L′,
in other words, eij belongs to the row containing the ith row of Atj . Orient the edges
of P alternately along the path — the first edge can be oriented arbitrarily, and this
determines the direction of the other edges along the path. If the (at most) two arcs
of P adjacent to arc eji are oriented towards eji , then we orient eji outwards from the
common node. Otherwise, if the (at most) two arcs of P are oriented away from eji ,
then eji is oriented inwards — since the arcs of P are alternately oriented, only these
two cases are possible.

Now, we define the non-tree arcs, which correspond to the columns of the matrix.
Each column intersects exactly one of the matrices in the diagonal, say Atj , and each
column contains exactly three non-zero elements. Suppose that the rth column is the
ith column of Atj for some j ∈ {1, . . . , k}. Then two of the three ones in the column

EGRES Technical Report No.

Section 2. Integrality gap and approximation algorithms 8

are in the ith and (i+1)st rows of Atj , to which rows the corresponding arcs are eij and

ei+1
j , respectively. The third one is in the jth identity matrix, in the row corresponding

to arc fi. In the tree F , arcs eij, fi and ei+1
j form a directed path, hence one can add

a non-tree arc from the target of this path to its source, which corresponds to the rth

column. This shows that L′ is a network matrix.
Next, we prove that the original L is also a network matrix by a simple extension

of the tree F and the non-tree arcs defined above. Let M denote the submatrix of
the last |Ei| rows of L, that is, M consists of the identity matrices of size |Ei| × |Ei|
written side by side.

Observe that if there is exactly one non-zero element in the rth column of Btj in
L for some j, then there is exactly one non-zero element in the rth column of every
block Btj′

for j′ ∈ {1, . . . , k}. Each of these columns in L contains exactly two ones.

The first one is in the ith row of the corresponding block Btj , which is associated with
arc eij ∈ F . The other one is in the rth row of M . For each j ∈ {1, . . . , k}, add a new
leaf to F connected to the endpoint of eij belonging to P , and associate it with the rth

row of M . Orient it such that it forms a directed path of length two with eij. Finally,
add a non-tree arc from the source of this path to its target, which corresponds to the
column of L containing the rth column of Btj . This shows that L is indeed a network
matrix. As the right-hand side of (LP1) is integer, we get that the polytope defined
by (LP1) is integer for Gi, which completes the proof of the lemma.

We continue the proof of Theorem 2.2. Let x ∈ R
E
+ be an optimal LP solution,

and let x(i) ∈ RE+ be an optimal LP solution for Gi, where i ∈ {1, . . . , 2d − 2}. Let
M∗ be a maximum-weight d-distance b-matching, and let Mi be a maximum-weight
d-distance b-matching in Gi, where i ∈ {1, . . . , 2d − 2}. Chose a maximum-weight
solution among M1, . . . ,M2d−2, and denote it by M .

Similarly to (2), as each edge of G is contained in exactly d of G1, . . . , G2d−2, and
by Claim 2.3, we get that

wx ≤ 1

d

2d−2∑
i=1

∑
e∈Ei

wex
(i)
e =

1

d

2d−2∑
i=1

w(Mi) ≤
2d− 2

d
w(M) ≤ 2d− 2

d
w(M∗),

which means that the integrality gap is at most (2 − 2
d
). The proof also shows that

the edge set M is a (2− 2
d
)-approximate solution, which can be found in polynomial

time, so the proof also gives an approximation algorithm for the maximum-weight
d-distance b-matching problem with the same guarantee, provided that b(t) = ∞ for
all t ∈ T .

Observe that, for d = 2, Claim 2.3 holds for arbitrary b, therefore (LP1) describes
the d-distance b-matching polytope.

Remark 2.4. In the proofs of Theorems 2.1 and 2.2, we constructed a collection of
edge sets such that the linear program becomes integer when the problem is restricted to
any of them, and every edge is contained in d of the selected edge sets. This means that
these two collections of edge sets form so-called (m, `)-covers for (m, `) = (2d− 1, d)

EGRES Technical Report No.

Section 3. Hardness of approximation 9

and (m, `) = (2d − 2, d), respectively, which gives an alternative way to finish the
proofs, because the existence of an (m, `)-cover implies that the integrality gap is at
most m

`
[12].

Remark 2.5. The local search algorithm given for the unweighted d-distance matching
problem [1] also works for the unweighted d-distance b-matching problem. Therefore,
we have a (3/2 + ε)-approximation algorithm for the latter problem.

3 Hardness of approximation

In the double matching problem, we are given a bipartite graph G = (S, T ;E) and
two sets S1, S2 ⊆ S such that S1 ∪ S2 = S. The goal is to find a maximum weight
(size) subset M of the edges for which both M ∩ E1 and M ∩ E2 are matchings,
where Ei denotes the edges induced by Si and T for i ∈ {1, 2}. The double matching
problem is known to be APX-hard in the weighted case [12]. This implies that the
weighted d-distance matching problem and the unweighted cyclic distance matching
problems are APX-hard by a weight-preserving reduction from the double matching
problem [1].

In what follows, we prove that the hardness of approximation also applies to the
unweighted non-cyclic case.

Theorem 3.1. The unweighted double matching problem is NP-hard to α-approximate
for any α < 950

949
.

Proof. Given are three finite disjoint sets X, Y, Z and a set of hyperedges E ⊆ X ×
Y × Z, a subset of the hyperedges F ⊆ E is called 3-dimensional matching if x1 6=
x2, y1 6= y2 and z1 6= z2 for any two distinct triples (x1, y1, z1), (x2, y2, z2) ∈ F . Finding
a maximum-size 3-dimensional matching F ⊆ E cannot be approximated arbitrarily
unless P=NP [13]. In fact, the problem remains NP-hard to approximate better than
95
94

even for 2-regular instances, that is, when each element of X ∪ Y ∪ Z occurs in
exactly two triples in E [14]. To reduce the 2-regular 3-dimensional matching problem
to the double matching problem, consider the following construction.

Let HX ,HY and HZ denote three copies of the set of hyperedges H, where the
three versions of a hyperedge e ∈ H are e(X) ∈ HX , e

(Y) ∈ HY and e(Z) ∈ HZ . Define
a bipartite graph G = (S, T ;E), where S = HX ∪ Y ∪ HZ , T = X ∪ HY ∪ Z and
E is as follows. For each e ∈ H, add edges e(X)e(Y) and e(Y)e(Z) ∈ E, furthermore,
add an edge to G between u and the two hyperedges in HU incident to u in H for
each u ∈ U , where U ∈ {X, Y, Z}. Let S1 = HX ∪ Y and S2 = Y ∪ HZ . For a
hyperedge e = (x, y, z) ∈ H, let Ke = {e(X)e(Y), e(Z)e(Y), xe(X), ye(Y), ze(Z)} ⊆ E.
Figures 1a and 1b give an example for the construction.

Assume that there exists an α-approximation algorithm for the maximum double
matching problem and let M be an α-approximate solution in G. We prove that
one can construct a (1

10/α−9
)-approximate 3-dimensional matching in polynomial time

using M , provided that α < 10
9

.
First, consider the following transformation of M . For each e ∈ H, if |Ke∩M | < 3,

then add edges e(X)e(Y) and e(Y)e(Z) to M , and remove all other edges of Ke. After

EGRES Technical Report No.

Section 3. Hardness of approximation 10

z1 z2

y1 y2

x1 x2

(a) An instance of
the 3-dimensional
matching problem.

e
(X)
1 e

(X)
2 e

(X)
3 e

(X)
4

y1 y2 e
(Z)
1 e

(Z)
2 e

(Z)
3 e

(Z)
4

x1 x2 e
(Y)
1 e

(Y)
2 e

(Y)
3 e

(Y)
4

z1 z2

S1

S2

(b) The corresponding instance of the double matching problem.

Figure 1: Illustration of the proof of Theorem 3.1. Each hyperedge is represented by
a unique line style. The highlighted 3-dimensional matching in (a) corresponds to the
highlighted solution in (b).

these operations, M remains feasible and its size does not decrease, hence it remains
an α-approximate double matching. Observe that after the transformation we have
either |Ke ∩M | = 2 and hence Ke ∩M = {e(X)e(Y), e(Y)e(Z)}, or |Ke ∩M | = 3 and
hence Ke ∩M = {xe(X), ye(Y), ze(Z)} for each e = (x, y, z) ∈ H.

Construct the 3-dimensional matching F ⊆ H as the set of those hyperedges for
which |Ke∩M | = 3. Note that F is feasible, because Ke1∩M = {x1e

(X)
1 , y1e

(Y)
1 , z1e

(Z)
1 }

and Ke2∩M = {x2e
(X)
2 , y2e

(Y)
2 , z2e

(Z)
2 } can hold simultaneously only if x1 6= x2, y1 6= y2

and z1 6= z2 — as the degrees of these nodes are at most one in M .
That is, we can construct a 3-dimensional matching F in H such that

|M | = 3|F |+ 2(2|Z| − |F |) = |F |+ 4|Z|,

since exactly three edges belong to each hyperedge in F , and two edges belong to each
hyperedge in H \ F . Applying this for a maximum double matching M∗, we get that

|M∗| = |F ′|+ 4|Z| ≤ |F ∗|+ 4|Z|,

where F ′ denotes the 3-dimensional matching constructed from M∗, and F ∗ is a
maximum 3-dimensional matching in H. Similarly, for any 3-dimensional matching
F in H, we can create a double matching M in G such that |M | = |F | + 4|Z|, so
|M∗| ≥ |F ∗|+ 4|Z|, therefore

|M∗| = |F ∗|+ 4|Z|.

Hence, for the α-approximate double matching M , the 3-dimensional matching F
constructed from M , and for optimal M∗ and F ∗ solutions,

|M∗| − |M | = |F ∗| − |F | (3)

EGRES Technical Report No.

Section 4. Optimal permutations 11

holds.
With the greedy method, we can always construct a 3-dimensional matching of size

at least |H|
4

, therefore |F ∗| ≥ |H|
4

= |Z|
2

. Using that |S| = 2|H| + |Z| = 5|Z| and that
in a double matching M each s ∈ S has degree at most 1, one gets that |M∗| ≤ 5|Z|.
Therefore,

|M∗| ≤ 5|Z| ≤ 10|F ∗| (4)

holds. It follows from these observations that

|F |
|F ∗|

=
|F ∗| − (|M∗| − |M |)

|F ∗|
= 1− |M

∗| − |M |
|F ∗|

≥ 1− 10
|M∗| − |M |
|M∗|

= 1− 10

(
1− |M |
|M∗|

)
= 1− 10

(
1− 1

α

)
=

10

α
− 9

where the first inequality follows from (3), and the second one holds by (4). If α < 10
9

and F 6= ∅, then |F
∗|
|F | ≤

1
10/α−9

, so if we had an α-approximate algorithm for the double

matching problem, then we could construct a (1
10/α−9

)-approximate 3-dimensional
matching in polynomial time. The 2-regular 3-dimensional matching problem is NP-
hard to β-approximate for any β < 95

94
, which implies that the double matching

problem is NP-hard to α-approximate for α < 950
949

.

By the size-preserving reduction from the double matching problem to the distance
matching problem given in [12], the previous theorem implies the following.

Theorem 3.2. The unweighted distance matching problem is NP-hard to α-approximate
for any α < 950

949
.

Clearly, this result also applies to the more general unweighted cyclic version of the
problem. Note that the proof given in [12] gives a slightly larger threshold of 760

759
in

the weighted non-cyclic and in the unweighted cyclic cases.

4 Optimal permutations

This section investigates a slightly different problem, which is motivated by the second
application presented in the introduction. It is a natural question whether we can
find a permutation of S — which corresponds to the items on the conveyor belt —
maximizing the weight of the optimal d-distance b-matchings. Formally, let M∗

π denote
an optimal d-distance b-matching under the permutation π of S. We want to find a
permutation of S and a d-distance b-matching M∗ with respect to this permutation
such that w(M∗) = maxπ∈Sw(M∗

π), where S is the set of all permutations of S.
In the next section, a polynomial-time algorithm is described for finding an optimal

permutation and an optimal d-distance matching under this permutation (that is,
when b(s) = 1 for all s ∈ S and b(t) =∞ for all t ∈ T). Section 4.1, however, proves
that the analogous problem is NP-hard for d-distance b-matchings even if b ≡ 2 or
d = 2, and gives e-approximation algorithms for general b in both the cyclic and the
non-cyclic cases, where e is Euler’s number.

EGRES Technical Report No.

Section 4. Optimal permutations 12

As we have already seen, for a given permutation of S, it is NP-complete to decide
whether a perfect (cyclic) d-distance matching exists; and finding a largest one is
APX-hard. In this light, it is quite surprising that we can find a permutation of S
which maximizes the weight of the maximum-weight (cyclic) d-distance matching —
furthermore, an optimal distance matching under the optimal permutation can be
found as well.

Before entering the details of this method, we need the following lemma, which is
easy to prove by a straightforward reduction to the circulation problem.

Lemma 4.1. For a bipartite graph G = (S, T ;E), a weight function w : E → R+ on
its edges and integers k, r ∈ Z+, we can find a maximum-weight subset of the edges in
polynomial time satisfying the following three conditions:

1) the degrees of the nodes in S are at most 1,

2) the degrees of the nodes in T are at most (k + 1), and

3) there are at most r nodes in T with degree exactly (k + 1).

Next, we prove that one can find a permutation maximizing the size of the optimal
d-distance matching. Note that the first algorithm for the non-cyclic case appeared
in [15]. In the rest of this section, a revised, more intuitive approach is presented,
which will be modified to handle the cyclic case as well.

Theorem 4.2. For a bipartite graph G = (S, T ;E), a weight function w : E → R+

on its edges and a positive integer d ∈ N, we can find a permutation of S along with
a d-distance matching M in polynomial time such that the weight of M is the largest
among all d-distance matchings over all permutations of S.

Proof. Let k, r ∈ Z+ be such that |S| = kd + r, where 0 ≤ r < d. Find a maximum-
weight edge set M in G such that the degrees of the nodes in S are at most 1, the
degrees of the nodes in T are at most (k + 1), and there are at most r nodes in T
with degree exactly (k+ 1). Such an edge set M can be found in polynomial time by
Lemma 4.1.

Clearly, a maximum-weight d-distance matchings under all permutations fulfill these
three conditions, so for this largest possible weight W ,

w(M) ≥ W (5)

holds. To show equality, it suffices to construct a permutation of S such that M is
a feasible d-distance matching in G. Let t1, . . . , t|T | be a permutation of the nodes in
T which lists the nodes of degree (k + 1) first, then the nodes with degree smaller
than k, and finally the nodes of degree k. Let s′1, . . . , s

′
n be a permutation of S in

which the neighbors in M of tj form an interval for all j ∈ {1, . . . , |T |} and these
intervals appear in the order given by t1, . . . , t|T | (the order of the neighbors of any tj
is arbitrary). Figure 2a shows an example for the construction. Now, take a table of
size d× (k + 1), and remove all cells from the last column except for the first r. Fill
the remaining cells of the table in row-major order with s′1, . . . , s

′
n. Let s1 . . . , sn be

EGRES Technical Report No.

Section 4. Optimal permutations 13

s′1 s′2 s′3 s′4 s′5 s′6 s′7 s′8 s′9 s′10 s
′
11

t1 t2 t3 t4 t5 t6

(a) A feasible matching for d = 4. The indeces of the
nodes correspond to the first step of the construction
described in the proof. In this case, k = 2 and r = 3.

s′1 s′2 s′3

s′4 s′5 s′6

s′7 s′8 s′9

s′10 s′11

t1

t2 t3 t4

t4 t5

t6

(b) The table corresponding to
the graph shown on the left. The
optimal permutation is s′1, s

′
4, s
′
7,

s′10, s
′
2, s
′
5, s
′
8, s
′
11, s

′
3, s
′
6, s
′
9.

Figure 2: Illustration of the proof of Theorem 4.2.

the permutation of S obtained by reading the table in column-major order. Figure 2b
shows an example for the table-filling step.

We claim that M is a feasible d-distance matching under the permutation s1, . . . , sn.
The degrees in M of the nodes in S are clearly at most 1. To see that the distance
constraints are met at each node t ∈ T , consider the following three cases. 1) The
degree of t in M is (k + 1). This means that the neighbors of t occupy one of the
first r rows of the table, which are of length (k + 1). In column-major order, there
are (d− 1) other nodes between any two consecutive neighbors of t, which was to be
shown. 2) The degree of t in M is smaller than k. The neighbors of t are placed to
at most two rows of the table in a row-major manner. Each of these rows is of length
k or (k + 1), therefore any two consecutive neighbors in row-major manner have at
least (d − 1) other nodes between them. The first and the last neighbors of t have
a column between them which contains no neighbors of t, and hence there are more
than (d− 1) nodes between them in column-major order. 3) The degree of t in M is
k. By construction, the neighbors of t either occupy one of the last (d − r) rows of
the table — which are of length k —, or they are placed to at most two rows in row-
major manner such that the upper row is of length (k + 1). Similarly to the previous
case, there are (d − 1) other nodes between any two consecutive neighbors and also
between the first and the last one. These three cases prove that M is feasible under
the permutation s1, . . . , sn of S. By (5), this means that M is a heaviest d-distance
matching among all distance matchings under all permutations, which completes the
proof of the theorem.

Now we prove the analogous theorem for the cyclic case.

Theorem 4.3. For a bipartite graph G = (S, T ;E), a weight function w : E → R+

on its edges and a positive integer d ∈ N, we can find a permutation of S and a
maximum-weight cyclic d-distance matching M with respect to this permutation in
polynomial time such that the weight of M is the largest over all permutations of S.

EGRES Technical Report No.

4.1 (Cyclic) d-distance b-matchings 14

Proof. We follow the same principle as in the proof of Theorem 4.2. Let |S| = kd+ r,
where 0 ≤ r < d. Find a maximum-weight edge set M in G such that the degrees of
the nodes in S are at most 1, and the degrees of the nodes in T are at most k. Such
an edge set can be found in polynomial time. Similarly to the proof of Theorem 4.2, it
suffices to construct a permutation of S such that M is a feasible d-distance matching
in G.

Let t1, . . . , t|T | be a permutation of the nodes in T which lists the nodes of degree
k first, then the rest of the nodes. Let s′1, . . . , s

′
n be a permutation of S in which the

neighbors in M of tj form an interval for all j ∈ {1, . . . , k} and these intervals appear
in the order given by t1, . . . , t|T | (the order of the neighbors of any tj is arbitrary).
Now, take a table of size (d + 1) × k, and remove all cells from the last row except
for the first r. Fill the remaining cells of the table in row-major order with s′1, . . . , s

′
n.

Let s1 . . . , sn be the permutation of S obtained by reading the table in column-major
order. Similarly to the proof for the non-cyclic case, one can prove that M is a feasible
d-distance matching under this permutation.

Observe that Theorems 4.2 and 4.3 extend to the case when degree bounds are also
given for the nodes in T . To prove this, one can require that in the initial edge set
M , found in the first steps of the proofs, the degree of each node t ∈ T is also at most
b(t) — Lemma 4.1 is easy to modify for finding such an edge set.

4.1 (Cyclic) d-distance b-matchings

This section proves that the analogous problem for d-distance b-matchings is hard,
even if b ≡ 2 or d = 2.

4.1.1 Hardness results

We saw that an optimal permutation can be found in polynomial time for both cyclic
and non-cyclic d-distance matchings. This section investigates the complexity of the
analogous problem for the d-distance b-matching problem. First, we show that finding
an optimal permutation is already hard when b(s) = 2 for all s ∈ S and b(t) = ∞
for all t ∈ T , that is, we consider the slight modification of the d-distance matching
problem where the degree bound for each node in S is two — instead of the all-one
bound.

Theorem 4.4. It is NP-complete to decide whether there exists a permutation of
S such that there is a perfect d-distance b′-matching under this permutation, where
d = |S|/2 and

b′(v) =

{
2 if v ∈ S,
∞ if v ∈ T

(6)

for v ∈ S ∪ T .

Proof. In the C4k+2Free2Factor problem, a bipartite graph G′ = (S ′, T ′;E ′) is given
and the goal is to decide whether it contains a 2-factor (that is, a subgraph in which

EGRES Technical Report No.

4.1 (Cyclic) d-distance b-matchings 15

the degree of each node is exactly two) such that the length of every cycle in it is a
multiple of 4. This problem is known to be NP-complete [16], therefore, it suffices to
reduce it to the problem defined in the theorem.

Without loss of generality, we can assume that |S ′| = |T ′|— otherwise, the instance
of the C4k+2Free2Factor problem is not solvable. Let G = (S, T ;E) be a copy of G′,
and add |S ′| new nodes to S, and 2|S| new nodes to |T |. Add |S ′| node-disjoint paths
of length two on the newly added nodes such that the nodes in the middle of the paths
are in S and their endpoints are in T . We show that G′ has a 2-factor consisting of
cycles whose length is divisible by 4 if and only if there is a permutation of S such
that a perfect d-distance b′-matching exists in G, where b′ is as defined in (6) and
d = |S|/2.

Let s1, . . . , sn be a permutation of the nodes in S such that there exists a perfect
d-distance b′-matching M ⊆ E. The degrees in M of the nodes in S are exactly 2, so
M contains all the edges of the paths of length 2 added to G, and the degrees of the
nodes in T ′ ⊆ T are also exactly 2 since |S ′| = |T ′|. Therefore, restricting M to the
edge set of the original graph G′, we get a 2-factor in G′. We prove that the length
of each cycle is a multiple of 4. For all t ∈ T , if sit, sjt ∈ M for some i 6= j and
hence t ∈ T ′, then |i− j| ≥ |S ′|. But |S| = 2|S ′|, thus one of the indices i and j is in
{1, . . . , |S|}, and the other one is in {|S ′| + 1, . . . , 2|S ′|}. This means that the nodes
of S can be divided into two disjoint sets S1 and S2 such that one of the neighbors
of t is in S1 and the other one is in S2 for all t ∈ T ′. From this, one gets that every
second node of any cycle in M ′ is in S, and the nodes of the cycle in S are alternately
in S1 and in S2, so the length of every cycle must be a multiple of 4.

To finish the proof, we show that if there is a 2-factor in G′ with cycles whose length
is divisible by 4, then there exists a permutation of the nodes in S such that there is a
d-distance b′-matching in G. For each cycle of the 2-factor, divide its nodes belonging
to S into two sets S1 and S2 alternately. Construct a permutation by enumerating
the nodes of S1 in arbitrary order, then the middle nodes of the paths of length two in
arbitrary order, and finally the nodes of S2 in arbitrary order. Under this permutation,
the union of the edge set of the 2-factor and the edges of the paths of length two form
a d-distance b′-matching, where b′ is as defined in (6) and d = |S|/2 = |S ′|.

To prove a similar theorem for the cyclic case, we need the following lemma.

Lemma 4.5. It is NP-complete to decide whether all nodes of a bipartite graph G =
(S, T ;E) can be covered by node-disjoint cycles of length 4.

Proof. Given four disjoint sets X1, X2, X3, X4 and a set of hyperedges E ⊆ X1×X2×
X3 × X4, a subset of the hyperedges F ⊆ E is called 4-dimensional matching if
u1 6= v1, u2 6= v2, u3 6= v3 and u4 6= v4 for any two distinct hyperedges (u1, u2, u3, u4),
(v1, v2, v3, v4) ∈ F . It is NP-complete to decide whether there exists a 4-dimensional
matching of size |X1| [17].

We reduce the 4-dimensional matching problem to the problem defined in the lemma
statement. Let H = (X1 ∪ X2 ∪ X3 ∪ X4, E) denote the hypergraph given in the 4-
dimensional matching problem, and define an instance of the problem given in the
statement of the lemma as follows. Let the node set of G consist of the elements in

EGRES Technical Report No.

4.1 (Cyclic) d-distance b-matchings 16

v1 v2

v3v4

ve1 ve2

ve3ve4

Figure 3: Illustration for the reduction in the proof of Lemma 4.5 for the hyperedge
(v1, v2, v3, v4).

X1 ∪X2 ∪X3 ∪X4 and, for each e ∈ E , four additional nodes ve1, ve2, ve3 and ve4. For
each hyperedge (v1, v2, v3, v4) ∈ E add the edges v1v2, v2v3, v3v4 and v4v1 to G. Also
add the edges ve1v

e
2, ve2v

e
3, ve3v

e
4, ve4v

e
1, and v1v

e
1, v2v

e
2, v3v

e
3, v4v

e
4 to G for all e ∈ E .

Figure 3 illustrates the construction for the hyperedge (v1, v2, v3, v4) ∈ E . It is easy to
see that G is bipartite: let S consist of the nodes in X2∪X4 and also the nodes ve for
v ∈ X1 ∪X3, e ∈ E , and let T consist of the rest of the nodes. By the definition of E,
neither of the two parts induces any edges. We need to show that there is a perfect
4-dimensional matching in H if and only if G has a vertex cover with node-disjoint
4-cycles.

Firstly, given a perfect 4-dimensional matching F in H, we construct the set of
4-cycles as follows. For any hyperedge e = (v1, v2, v3, v4) ∈ F , select the cycle formed
by the nodes v1, v

e
1, v

e
2, v2 and the cycle on nodes v3, v

e
3, v

e
4, v4. For each hyperedge

(u1, u2, u3, u4) ∈ E \ F , also add the cycle formed by the nodes ue1, u
e
2, u

e
3, u

e
4. The

4-cycles obtained this way are pairwise node-disjoint, because the hyperedges in F
form a 4-dimensional matching. Clearly, they cover all the nodes of G, because F is
a perfect 4-dimensional matching.

Secondly, assume that there exists a cover with node-disjoint 4-cycles in G. We
modify the set of the cycles as follows. If for a hyperedge e = (v1, v2, v3, v4) both of the
cycles formed by nodes v1, v2, v3, v4 and ve1, v

e
2, v

e
3, v

e
4 are in the subgraph, then delete

these two cycles and add the cycles formed by the nodes v1, v
e
1, v

e
2, v2 and v3, v

e
3, v

e
4, v4

instead. Clearly, the new cycles are node-disjoint and cover every node of G. Now,
construct a 4-dimensional matching F in H by adding the hyperedge e = (v1, v2, v3, v4)
to F if and only if the cycle formed by the nodes ve1, v

e
2, v

e
3, v

e
4 is not in the set of the

selected 4-cycles. This is a perfect 4-dimensional matching, because if the cycle on
nodes ve1, v

e
2, v

e
3, v

e
4 is not selected, then the two cycles covering these four nodes cover

the nodes v1, v2, v3, v4, and because all nodes of G are in exactly one of the selected
4-cycles.

Now we are ready to prove the analogous theorem for the cyclic case.

Theorem 4.6. It is NP-complete to decide whether there exists a permutation of
the nodes in S such that there is a perfect cyclic d-distance b′-matching under this
permutation, where d = |S|/2 and

b′(v) =

{
2 if v ∈ S,
∞ if v ∈ T

(7)

EGRES Technical Report No.

4.1 (Cyclic) d-distance b-matchings 17

for v ∈ S ∪ T .

Proof. Clearly, the problem is in NP. We reduce the problem defined in Lemma 4.5 to
the problem in the theorem. Let G = (S, T ;E) be a bipartite graph, and let d = |S|/2.
Assume that |S| = |T |. We show that the nodes of G can be covered by node-disjoint
cycles of length 4 if and only if there exists a permutation of the nodes in S under
which a perfect cyclic d-distance b′-matching exists, where b′ is as defined in (7). This
implies the statement of the theorem, since the former problem is NP-complete by
Lemma 4.5.

Firstly, assume that we have a permutation s1, . . . , sn of S under which a perfect
d-distance b′-matching M exists. Since the M -degree of every node in S is exactly
2, the size of M is 2|S|. Furthermore, d = |S|/2, therefore the degree of t in M is
at most 2. From this, the degree of t in M is exactly 2 by |S| = |T |, therefore M is
the node-disjoint union of cycles. If one of the neighbors of a node s ∈ S is t ∈ T ,
then t has a uniquely defined other neighbor, since there exists exactly one node in S
whose cyclic distance is at least |S|/2 from s. The same holds for the other neighbor
of s. So, for every s ∈ S, the two neighbors of it have the same two neighbors, which
gives a cycle of length 4. Hence the edges of the cyclic d-distance b′-matching cover
all nodes and is the union of node-disjoint 4-cycles.

Secondly, if there is a set of node-disjoint cycles of length 4 covering the nodes of
G, then we can construct a proper permutation of S as follows. For each cycle, take
one of its nodes in S, and put them in the first |S|/2 positions of the permutation in
arbitrary order. This clearly determines the order of the rest of the nodes in S, since
for any node s from the first |S|/2 nodes, there is exactly one other node in S having
a common neighbor with s, so this must be placed exactly |S|/2 positions after s.

Note that the proofs of Theorems 4.4 and 4.6 also show that the problem is NP-
complete when b(s) = b(t) = 2 for all s ∈ S and t ∈ T both in the cyclic and the
non-cyclic case. Next, Theorems 4.4 and 4.6 are extended to the case when b(s) ≥ 2
for all s ∈ S — instead of b(s) = 2.

Theorem 4.7. Both in the cyclic and the non-cyclic case, it is NP-complete to decide
whether there exists a permutation of the nodes in S such that there is a perfect (cyclic)
d-distance b′′-matching under this permutation, where b′′(s) ≥ 2 for all s ∈ S and
b′′(t) =∞ for all t ∈ T .

Proof. In both cases, the problem is in NP. We prove the theorem for the cyclic and
the non-cyclic versions simultaneously by showing that finding a permutation under
which a perfect (cyclic) d-distance b′′-matching exists is more general than finding a
permutation under which a perfect (cyclic) d-distance b′-matching exists, where b′ is
as defined in (7).

We modify the input graph of the perfect (cyclic) d-distance b′-matching problem
as follows. For each s ∈ S, add (b′′(s) − 2) new nodes to T , and connect them to s.
Let F denote the set of the newly added edges. We prove that there is a permutation
of S under which a perfect (cyclic) d-distance b′-matching exists in the original graph
if and only if there is a perfect (cyclic) d-distance b′′-matching in the new graph under
the same permutation of S.

EGRES Technical Report No.

4.2 (Cyclic) d-distance b-matchings for small d 18

Firstly, if there is a perfect (cyclic) d-distance b′-matching M ′ in the original graph
under some permutation of S, then M ′∪F is a perfect (cyclic) d-distance b′′-matching
in the new graph under the same permutation.

Secondly, for the reverse direction, let M ′′ denote a perfect (cyclic) d-distance b′′-
matching in the new graph under some permutation of S. Take the edge set M ′′ \ F ,
and remove all except two of the edges incident to each node s ∈ S. This way one
gets a feasible perfect (cyclic) d-distance b′-matching in the original graph under the
same permutation.

This completes the proof both in the cyclic and the non-cyclic version by Theo-
rems 4.4 and 4.6, respectively.

4.2 (Cyclic) d-distance b-matchings for small d

By Theorems 4.4 and 4.6, finding an optimal permutation is hard when d = |S|/2.
We show that the problem is also hard for any d ≥ 2 that is polynomially smaller
than |S|, which, as a special case, implies that even the case d = 2 is NP-complete.

Theorem 4.8. It is NP-complete to decide whether there exists a permutation of
the nodes in S such that there is a perfect (cyclic) d-distance b′-matching under this
permutation, where |S| = d(` + 1) − 2, d ≥ 2, ` = Ω(|S|c) for some constant c > 0,
and

b′(v) =

{
deg(v) if v ∈ S,
∞ if v ∈ T

(8)

for v ∈ S ∪ T .

Proof. The problem is clearly in NP. We give a reduction from the Hamiltonian path
problem in an undirected simple graph G′ = (V ′, E ′) to the non-cyclic case when
d = 2, then we show that the problem stated in the theorem includes this as a special
case. Construct a bipartite graph G = (S, T ;E) such that S = V ′ and T is the edge
set of the complement of G′. For each t = uv ∈ T , add edges ut and vt to G. We
prove that there exists a Hamiltonian path in G′ if and only if there is a permutation
of the nodes in S under which a perfect d-distance b′-matching exists, where d = 2
and b′ is as defined in (8).

Firstly, assume that M is a perfect d-distance b′-matching in G under the permu-
tation s1, . . . , sn of S. By the definition of b′, this means that M = E, therefore
{sit, si+1t} 6⊆ E for all i ∈ {1, . . . , n − 1} and for all t ∈ T . But then sisi+1 ∈ E ′ for
all i ∈ {1, . . . , n− 1}, which means that s1, . . . , sn defines a Hamiltonian path in G′.

Secondly, assume that a Hamiltonian path in G′ traverses the nodes of G′ in the
order s1, . . . , sn. This means that there is an edge ei in E ′ between si and si+1 for
all i ∈ {1, . . . , n − 1}, that is, {sit, si+1t} 6⊆ E for all i ∈ {1, . . . , n − 1} and for all
t ∈ T . This means that M = E is a perfect d-distance b′-matching in G under the
permutation s1, . . . , sn of S, where d = 2 and b′ is as defined above. This completes
the proof for d = 2 in the non-cyclic case.

EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 19

Now we prove that if n = |S| = d(` + 1) − 2 for ` = Ω(nc) and d ≥ 2, then the
non-cyclic problem includes the case d = 2 for G′ = (S ′, T ′;E ′) with |S ′| = 2`. Let
G = (S, T ;E) be a copy of G′, and add a new node s̃q,r to S for all q ∈ {1, . . . , `+ 1}
and r ∈ {1, . . . , d − 2}. For r ∈ {1, . . . , d − 2}, also add a new node tr to T and all
edges between tr and {s̃r,1, . . . , s̃r,`+1}.

Firstly, we show that if there is a permutation s1, . . . , sn of S under which E is
feasible in G, then there is a permutation of S ′ under which E ′ is feasible in G′.
We claim that sid−1, sid ∈ S ′ for all i ∈ {1, . . . , `}. By contradiction, suppose that
sid−1 = s̃q,r or sid = s̃q,r for some q and r. Let tr denote the only neighbor of s̃q,r. As
E is feasible, all neighbors of tr on the left of s̃q,r are among the nodes s1, . . . , sid−d.
Similarly, all neighbors of tr on the right of s̃q,r are among the nodes sid−1+d, . . . , sn.
Therefore, the degree of t must be at most⌈

id− d
d

⌉
+ 1 +

⌈
n− (id− 1 + d) + 1

d

⌉
= `,

which contradicts the fact that the degree of tr is (`+1) by the construction of G. This
means that sid−1, sid ∈ S ′ for all i ∈ {1, . . . , `}, as we claimed. Since the size of S ′ is
2`, the nodes sid−1, sid for i ∈ {1, . . . , `} are exactly the nodes in S ′. Therefore, every
interval of length d contains two nodes in S ′, which means that E ′ is a feasible solution
for G′ and d = 2 under the permutation of S ′ obtained by restricting s1, . . . , sn to S ′.

Secondly, we prove that if there is a permutation s′1, . . . , s
′
|S′| of S ′ under which E ′

is feasible, then there is a permutation of S under which E is feasible. Concatenate
the subsequences s̃q,1, . . . , s̃q,d−2 for q = 1, . . . , ` + 1. Then, insert s′2q−1 and s′2q in
this order right after s̃q,d−2 for q ∈ {1, . . . , `}. We claim that E is feasible under the
permutation obtained this way. As an interval of length d includes exactly two nodes
in S ′ and these nodes appear in the order given by s′1, . . . , s

′
|S′|, the edge set E ′ is

feasible. For each r ∈ {1, . . . , d− 2}, the neighbors of tr are the nodes s̃1,r, . . . , s̃`+1,r,
which do not appear in an interval of length d in the permutation defined above. This
means that the edge set E\E ′ is feasible as well. Since E ′ and E\E ′ are node-disjoint,
this implies that E is also feasible, which was to be shown. This completes the proof
in the non-cyclic case.

To show the hardness of the cyclic case, one can give a reduction from the Hamil-
tonian cycle problem. The proof is a straightforward modification of the reduction for
the non-cyclic case, therefore it is left to the reader.

In the previous theorem, we did not assume that the coordinates of b are small, un-
like in Theorems 4.4 and 4.6. It remains open whether the problem becomes tractable
when d = 2 and the coordinates of b are small, for example b ≡ 2.

4.3 Approximation algorithms for finding a permutation

In this section, we give e-approximation algorithms for finding the best (cyclic) per-
mutation under which the weight of the optimal (cyclic) d-distance b-matching is as
large as possible. The approximation algorithms also give an e-approximate (cyclic)

EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 20

Algorithm 1 Randomized approximation algorithm for cyclic S-permutations

For v ∈ S ∪ T , let b′(v) =

{
b(v) if v ∈ S,
min{bn

d
c, b(t)} if v ∈ T.

Find a maximum-weight b′-matching M̂ in G.
Generate a cyclic permutation s1, . . . , sn of S uniformly at random.
M := ∅
for t ∈ T do

for i = 1, . . . , n do
if sit ∈ M̂ and si−d+1t, . . . , si−1t /∈ M̂ then

M := M ∪ {sit}
output s1, . . . , sn and M

d-distance b-matching under the permutation. Both algorithms are randomized, but
they are easy to de-randomize, which we briefly discuss at the end of the section.

First, consider the cyclic version of the problem. Algorithm 1 finds a maximum-
weight b′-matching M̂ in G for the b′ defined in the algorithm and takes a random
cyclic permutation of S. Then, for each t ∈ T , it adds an edge sit ∈ M̂ to the solution
if and only if t and the (d− 1) nodes cyclically before si induce no edges in M̂ . The
algorithm returns the chosen permutation and the union of the selected edges. Clearly,
this edge set is a feasible cyclic d-distance b-matching under the chosen permutation,
because 1) the degree of any node s ∈ S is at most b(s), since the found edge set is

a subset of M̂ , and 2) the distance constraints are met at each node t ∈ T , since no

edge st is added for which an edge s′t ∈ M̂ exists such that s′ is one of the (d − 1)
nodes before s cyclically.

The following theorem gives a lower bound on the expected weight of the solution
found by Algorithm 1.

Theorem 4.9. Algorithm 1 outputs a cyclic permutation s1, . . . , sn of S and a feasible
cyclic d-distance b-matching M whose expected weight is at least

max

{(
1− 1

d

)d−1

,

(
1− 1

k

)k−1
}

(9)

times the weight of the heaviest cyclic d-distance b-matching under all permutations,
where k = maxt∈T b

′(t) for the b′ defined in Algorithm 1. This lower bound is tight.

Proof. As we have already seen, Algorithm 1 returns a feasible solution under the
randomly chosen permutation. Let E(n, d, k) denote the expected weight of the so-
lution found by the algorithm, and let α(d, k) denote the lower bound given by (9).
First, we consider the unweighted case when T = {t}. Without loss of generality, one
can assume that k ≥ 2 and d ≤ n. Note that n ≥ dk holds by the definition of b′. Let
P (n, d, k) be the probability that a given edge is added to the solution. By definition,

P (n, d, k) =
d−1∏
i=1

n− k − (i− 1)

n− i
. (10)

EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 21

Clearly, E(n, d, k) = kP (n, d, k). Observe that

P (n, d, k) ≥ P (dk, d, k) (11)

holds for all n, d, k ∈ N provided that n ≥ dk, because dk is the smallest possible size
of S when the degree of t can be k in M̂ , and if the number of nodes in S is larger
than dk, then all additional nodes must be isolated, hence the probability of an edge
being added can be only larger. The value of P (dk, d, k) can be expressed as follows.

P (dk, d, k) =
d−1∏
i=1

kd− k − i+ 1

kd− i
=

d−1∏
j=max{1,d−k+1}

kd− k − j + 1

min{k−1,d−1}∏
i=1

kd− i

=

min{k−1,d−1}∏
i=1

kd− k − (d− i) + 1

kd− i
=

min{k−1,d−1}∏
i=1

(k − 1)d− k + i+ 1

kd− i
,

where the first equation holds by (10), and the third one because the product is
telescopic. From this, we immediately get that P (dk, d, k) is monotone decreasing in

d for all k ∈ N, and it tends to
(
1− 1

k

)k−1
as d goes to infinity for all k ∈ N. This

implies that

P (dk, d, k) ≥
(

1− 1

k

)k−1

(12)

holds for all d, k ∈ N. Similarly, P (dk, d, k) is monotone decreasing in k for all d ∈ N,

and it tends to
(
1− 1

d

)d−1
as k goes to infinity for all k ∈ N. This implies that

P (dk, d, k) ≥
(

1− 1

d

)d−1

(13)

holds for all d, k ∈ N.
By (11), (12) and (13), P (n, d, k) ≥ α(d, k) holds for all n, d, k ∈ N provided that

n ≥ dk, which completes the proof of the unweighted case when |T | = 1. The bounds
given by (12) and (13) are (asymptotically) tight, therefore (9) cannot be improved,
as we stated in the theorem.

Since all edges incident to t appear in the output of Algorithm 1 with equal proba-
bility, the expected weight of the returned edges is at least α(d, k)w(M̂ ∩∆(t)), which
was to be shown in the weighted case when |T | = 1.

We continue with the general weighted case, that is, when the size of T is arbitrary.
Let SC denote the set of all cyclic permutations of S, and let Mπ ⊆ M̂ denote the
feasible cyclic d-distance b-matching returned by the algorithm when it selects the
cyclic permutation π ∈ SC . The following computation leads to the bound stated in

EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 22

the theorem.

E(n, d, k) =

∑
π∈SC

w(Mπ)

|SC |
=

∑
π∈SC

∑
t∈T w(Mπ ∩∆(t))

|SC |

=
∑
t∈T

∑
π∈SC

w(Mπ ∩∆(t))

|SC |
=
∑
t∈T

P (n, d, degM̂(t))w(M̂ ∩∆(t))

≥
∑
t∈T

α(d, k)w(M̂ ∩∆(t)) = α(d, k)w(M̂) ≥ α(d, k)w(M∗),

where M∗ is an optimal cyclic d-distance b-matching under all permutations. The first
inequality holds by the case |T | = 1, and the second one because any cyclic d-distance

b-matching must respect the degree bounds posed by b′ and M̂ is a heaviest b′-matching
for the b′ defined in Algorithm 1. This completes the proof of the theorem.

It is well known that (9) is monotone decreasing and tends to 1
e

as k and d go to
infinity. This immediately implies the following.

Theorem 4.10. Algorithm 1 outputs a cyclic permutation s1, . . . , sn of S and a fea-
sible cyclic d-distance b-matching whose expected weight is at least 1

e
times the weight

of the heaviest cyclic d-distance matching under all permutations. This lower bound
is tight.

Now, we turn to the non-cyclic case.

Algorithm 2 Randomized approximation algorithm for S-permutations

For v ∈ S ∪ T , let b′(v) =

{
b(v) if v ∈ S,
min{dn

d
e, b(t)} if v ∈ T.

Find a maximum-weight b′-matching M̂ in G.
Generate a permutation s1, . . . , sn of S uniformly at random.
M := ∅
for t ∈ T do

for i = 1, . . . , n do
if sit ∈ M̂ and smax{1,i−d+1}t, . . . , si−1t /∈ M̂ then

M := M ∪ {sit}
output s1, . . . , sn and M

Algorithm 2 is the analog of Algorithm 1 for the non-cyclic d-distance b-matching
problem. First, the algorithm finds a maximum-weight b′-matching M̂ in G for the b′

defined in Algorithm 2, and takes a random permutation of S. Then, for each t ∈ T ,
it selects an edge sit ∈ M̂ if t and the (at most) (d−1) nodes before si induce no edges

in M̂ . It returns the chosen permutation and the union of the selected edges. Simi-
larly to Algorithm 1, the edge set returned by the algorithm is a feasible d-distance
b-matching under the chosen permutation.

The following theorem for the non-cyclic version is analogous to Theorem 4.9.

EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 23

Theorem 4.11. Algorithm 2 outputs a permutation s1, . . . , sn of S and a feasible
d-distance b-matching whose expected weight is at least

max

{(
1− 1

d

)d−1

,
1 + (k − 1)

(
1− 1

k−1

)k
k

}
(14)

times the weight of the heaviest d-distance b-matching under all permutations, where
k = maxt∈T b

′(t) for the b′ defined in Algorithm 2. This lower bound is tight.

Proof. The outline of the proof is similar to that of Theorem 4.9, but the technical
details are slightly more complicated. Let E(n, d, k) denote the expected weight of
the solution returned by the algorithm, and let β(d, k) denote the lower bound given
by (14). Similarly to the proof of Theorem 4.9, consider the case when T = {t} and
the problem is unweighted. Without loss of generality, one can assume that k ≥ 2 and
d ≤ n. Let P (n, d, k) be the probability that a given edge is added to the solution,
and let P (n, d, k, i) denote the probability that the edge incident to si is added to the
solution. By definition,

P (n, d, k) =
1

n

n∑
i=1

P (n, d, k, i),

and

P (n, d, k, i) =

min{d−1,i−1}∏
j=1

n− k − (j − 1)

n− j
.

Clearly, E(n, d, k) = kP (n, d, k). Observe that

P (n, d, k) ≥ P ((d− 1)k + 1, d, k)

holds for all n, d, k ∈ N provided that n ≥ (d− 1)k + 1, because ((d− 1)k + 1) is the

smallest possible size of S when the degree of t can be k in M̂ , and if the number of
nodes in S is larger, then all the extra nodes are isolated, hence the probability that
an edge is added can be only larger. Let n̄ = (d − 1)k + 1. The value of P (n̄, d, k)

EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 24

can be expressed as follows.

P (n̄, d, k) =
1

n̄

n̄∑
i=1

P (n̄, d, k, i) =
1

n̄

n̄∑
i=1

min{d−1,i−1}∏
j=1

n̄− k − (j − 1)

n̄− j

=
1

n̄

d−1∑
i=1

i−1∏
j=1

n̄− k − (j − 1)

n̄− j
+
n̄− d+ 1

n̄

d−1∏
j=1

n̄− k − (j − 1)

n̄− j

=
1

(k − 1)d+ 1

d−1∑
i=1

i−1∏
j=1

(k − 1)d− k − j + 2

(k − 1)d+ 1− j

+
(k − 1)d− d+ 2

(k − 1)d+ 1

d−1∏
j=1

(k − 1)d− k − j + 2

(k − 1)d+ 1− j

=
1

(k − 1)d+ 1

d−1∑
i=1

min{i−1,k−1}∏
j=1

(k − 1)d+ j − i− k + 2

(k − 1)d− j + 1

+
(k − 2)d+ 2

(k − 1)d+ 1

min{k−1,d−1}∏
j=1

(k − 2)d− k + j + 2

(k − 1)d− j + 1
, (15)

where the last equation holds by rearranging the products. Let f(d, k) and g(d, k)
denote the first and the second summand in the right hand-side of (15), respectively.
Clearly,

lim
d→∞

g(d, k) = lim
d→∞

(k − 2)d+ 2

(k − 1)d+ 1

min{k−1,d−1}∏
j=1

(k − 2)d− k + j + 2

(k − 1)d− j + 1
=

(
k − 2

k − 1

)k
. (16)

To derive the limit of f(d, k), we need the following computation.

((k − 1)d+ 1)f(d, k) =
d−1∑
i=1

min{i−1,k−1}∏
j=1

(k − 1)d+ j − i− k + 2

(k − 1)d− j + 1

=
d−1∑
i=1

min{i−1,k−1}∏
j=1

(k − 1)d− k − j + 2

(k − 1)d− j + 1
=

∑d−1
i=1

(
(k−1)d−i+1

k−1

)(
(k−1)d
k−1

)
=

(
(k−1)d+1

k

)
−
(

(k−2)d+2
k

)(
(k−1)d
k−1

) =
((k − 1)d+ 1)

(
(k−1)d
k−1

)
− ((k − 2)d+ 2)

(
(k−2)d+1
k−1

)
k
(

(k−1)d
k−1

)
=

(k − 1)d+ 1

k
−

((k − 2)d+ 2)
(

(k−2)d+1
k−1

)
k
(

(k−1)d
k−1

)
=

(k − 1)d+ 1

k
− (k − 2)d+ 2

k

k−1∏
j=1

(k − 2)d− j + 2

(k − 1)d− j + 1
, (17)

where the first equation holds by the definition of f , the second one by rearranging
the product, and the fourth one by applying the binomial identity

∑N
q=0

(
q
K

)
=
(
N+1
K+1

)
EGRES Technical Report No.

4.3 Approximation algorithms for finding a permutation 25

twice. Using (17), we get that

lim
d→∞

f(d, k) = lim
d→∞

1

k
− (k − 2)d+ 2

k((k − 1)d+ 1)

k−1∏
j=1

(k − 2)d− j + 2

(k − 1)d− j + 1
=

1−
(
k−2
k−1

)k
k

(18)

for all k ∈ N. By (15), (16) and (18), P (n̄, d, k) tends to(
k − 2

k − 1

)k
+

1−
(
k−2
k−1

)k
k

=
1 + (k − 1)

(
k−2
k−1

)k
k

as d goes to infinity for all k ≥ 2. Observe that P (n, d, k, i) is non-increasing in d,
and therefore so is P (n, d, k) for all n, k ∈ N. This implies that

P (n, d, k) ≥
1 + (k − 1)

(
k−2
k−1

)k
k

(19)

holds for all n, d, k ∈ N provided that n ≥ (k − 1)d + 1. Similarly, P (n, d, k) is non-
increasing in k for all n, d ∈ N. From (15), it is easy to see that P (n̄, d, k) tends to(
1− 1

d

)d−1
as k goes to infinity, therefore,

P (n, d, k) ≥
(

1− 1

d

)d−1

(20)

holds. By (19) and (20), P (n, d, k) ≥ α(d, k) follows for all n, d, k ∈ N provided that
n ≥ (k − 1)d + 1, which completes the proof of the unweighted case when |T | = 1.
The bounds given in (19) and (20) are (asymptotically) tight, therefore (14) cannot
be improved, as we stated in the theorem.

Since all edges incident to t appear in the output of Algorithm 2 with equal proba-
bility, the expected weight of the returned edges is at least β(d, k)w(M̂ ∩∆(t)), which
was to be shown in the weighted case when |T | = 1.

The general weighted case, when the size of T is arbitrary, can be handled by a
computation similar to the end of the proof of Theorem 4.9. From this, we get that
E(n, d, k) ≥ β(d, k)w(M∗), which completes the proof.

It is easy to see that (14) is monotone decreasing and tends to 1
e

as k and d go to
infinity. This immediately implies the following.

Theorem 4.12. Algorithm 2 outputs a permutation s1, . . . , sn of S and a feasible d-
distance b-matching whose expected weight is at least 1

e
times the weight of the heaviest

d-distance matching under all permutations. This lower bound is tight.

By Theorems 4.9 and 4.11, the expected approximation guarantees achieved by
Algorithms 1 and 2 are better than e when any of d, n

d
or the largest degree in T is

small. For example, if d = 2, then both algorithms return a 2-approximate solution
in expectation.

EGRES Technical Report No.

Section 5. Open questions 26

Both algorithms are easy to de-randomize using conditional probabilities as follows.
Observe that the conditional probability of an edge being added to the solution can
be easily computed under the condition that the positions of some of the nodes are
already fixed. Therefore, one can try to put each node to the first place, and choose
the one that gives the highest (conditional) expectation. Then try each of the remain-
ing nodes at the second position and put the best one there, and so on. The weights
of the outputs of the de-randomized algorithms are clearly at least as large as the
expected weight of the solutions found by the randomized algorithms.

In the rest of this section, an improved approximation algorithm for the non-cyclic
case is presented. Algorithm 2 includes an edge st in the solution set if and only if t
has no neighbors among the (d−1) nodes in front of s. A more efficient approach is to
run a greedy algorithm enumerating the edges incident to t from left to right for each
t ∈ T , in other words, the modified algorithm generates a random permutation of S
and executes algorithm T -Greedy as described in [1]. Clearly, the solution returned
by the modified algorithm is at least as good as the one found by Algorithm 2, provided
that they choose the same random permutation. We propose the following conjecture:

Conjecture 4.13. Generating a random permutation of S, algorithm T -Greedy
finds a feasible d-distance b-matching whose expected weight is at least 1

2
d2+d+2
d2+d

> 1
2

times the weight of the heaviest d-distance b-matching under all permutations.

Note that the conjecture is based on an extensive computational study. We computer-
verified the statement in all cases when |S| ≤ 1000 and d ≤ 100. Enumerating all such
instances directly is hopeless, but one can design a non-trivial dynamic programming
algorithm for computing the exact expected value in the case |S| = (k − 1)d+ 1 and
|T | = 1. Similarly to the proof of Theorem 4.11, this confirms the conjecture for all
problem instances with |S| ≤ 1000 and d ≤ 100.

Note that it is not difficult to construct an example for each d in which the expected
weight of the returned edges is exactly 1

2
d2+d+2
d2+d

times the optimum, so one cannot hope
to improve the bound above.

5 Open questions

An FPT algorithm parameterized by d was given for the d-distance matching prob-
lem [1]. A straightforward generalization of this approach gives an FPT algorithm
parameterized by both d and maxv∈V b(v) for the d-distance b-matching problem. It is
not clear whether an FPT algorithm parameterized only by d exists for this problem.
The d-distance matching problem was shown to be solvable in polynomial time when
the size of T is a constant [1]. Is the problem polynomial-time solvable when the size
of T is taken as a parameter?

It remains open whether an optimal permutation can be found when both d and the
coordinates of b are constants. Improving the e-approximation algorithms for finding
the best permutation — and in particular proving Conjecture 4.13 — seems to be a
challenging problem.

EGRES Technical Report No.

Section 6. Acknowledgement 27

By Theorems 4.2 and 4.3, finding a permutation maximizing the weight of the
heaviest (cyclic) d-distance b-matching can be solved when b(s) = 1 for all s, and it
is NP-hard when b(s) = 2 for all s ∈ S. What can we say about the cases between
these two extremes? It is easy to see that the problem is solvable when b(s) ∈ {1, 2}
and there are only a constant number of nodes for which b is 2. A natural question
is whether an FPT algorithm parameterized by the number of nodes for which b is 2
exists.

The construction given in Theorem 4.6 seems to be easy to modify to show that
the optimization version of the cyclic problem is APX-hard. We do not know whether
the non-cyclic optimization problem behaves differently in this regard.

The integrality gap of (LP1’) is at most (2− 1
d
) in the cyclic case when the size of

S is divisible by (2d − 1). We believe that this bound holds regardless of the size of
S, but the proof of Theorem 2.1 does not seem to generalize to this case.

In the non-cyclic case, the integrality gap is at most (2− 2
d
), but this does not seem

to be tight. The exact value of the integrality gap remains unknown.
In a natural generalization of the problem, a bound g(t, I) ∈ Z+ is given on the

number of edges induced by I and t for each t ∈ T and for each interval I of length
d in S. When g ≡ 1, we get back the d-distance b-matching problem. Some of the
results presented in this paper also apply to other special cases of this more general
setting. For example, (LP1) easily extends to the more general problem by changing
the right hand-side of (1c) to g(si, Rd(si)), and adding x ≤ 1. It is not hard to see
that the bounds on the integrality gap given by Theorems 2.1 and 2.2 hold for any
uniform g.

The problem has several other natural generalizations. For example, pose distance
constraints on both node classes, or drop some of the distance constraints, etc., which
are subjects for further research.

Motivated by the position-based scheduling problem on a single machine [18], we
introduce the position-based optimal permutation problem, in which placing s ∈ S at
each position has an associated cost, and the goal is to find a minimum-cost permuta-
tion of S under which a perfect d-distance matching exists. When the cost function is
uniform, the problem can be solved by Theorem 4.2. This approach does not seem to
work for other cost functions, so it is an exciting open question whether this problem
is polynomial-time solvable.

6 Acknowledgement

The author is grateful to Sára Hanna Tóth for discussions and for finding the gad-
get used in the proof of Theorem 3.1. This research has been implemented with the
support provided by the Ministry of Innovation and Technology of Hungary from
the National Research, Development and Innovation Fund, financed under the ELTE
TKP 2021-NKTA-62 funding scheme, by the Ministry of Innovation and Technology
NRDI Office within the framework of the Artificial Intelligence National Laboratory
Program, and by the Lendület Programme of the Hungarian Academy of Sciences –
grant number LP2021-1/2021.

EGRES Technical Report No.

References 28

References

[1] P. Madarasi. Matchings under distance constraints I. Annals of Operations
Research, 305(1):137–161, 2021.

[2] M. Makai. On maximum cost Kt,t-free t-matchings of bipartite graphs. SIAM J.
Discret. Math., 21(2):349–360, April 2007.

[3] A. Itai, M. Rodeh, and S. Tanimoto. Some matching problems for bipartite
graphs. J. ACM, 25:517–525, October 1978.

[4] J. Baste, D. Rautenbach, and I. Sau. Approximating maximum uniquely re-
stricted matchings in bipartite graphs. Discrete Applied Mathematics, 267:30–40,
2019.

[5] K. Bérczi and L. A. Végh. Restricted b-matchings in degree-bounded graphs.
In Friedrich Eisenbrand and F. Bruce Shepherd, editors, Integer Programming
and Combinatorial Optimization, pages 43–56, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[6] M. Fürst and D. Rautenbach. On some hard and some tractable cases of the max-
imum acyclic matching problem. Annals of Operations Research, 279(1-2):291–
300, 2019.

[7] Gy. Pap. Alternating paths revisited II: restricted b-matchings in bipartite graphs.
EGRES Technical Report TR-2005-13, 2005.

[8] T. Zeitlhofer and B. Wess. List-coloring of interval graphs with application to reg-
ister assignment for heterogeneous register-set architectures. Signal Processing,
83:1411–1425, 2003.

[9] K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sas-
sano. Models and solution techniques for frequency assignment problems. Annals
of Operations Research, 153(1):79–129, September 2007.

[10] A. Frank. Connections in Combinatorial Optimization. Oxford University Press,
2011.

[11] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operations Research, 34(2):250–256, 1986.

[12] P. Madarasi. The simultaneous assignment problem, 2021.

[13] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters, 37(1):27–35, 1991.

EGRES Technical Report No.

References 29

[14] M. Chleb́ık and J. Chleb́ıková. Complexity of approximating bounded variants
of optimization problems. Theoretical Computer Science, 354(3):320 – 338, 2006.
Foundations of Computation Theory (FCT 2003).

[15] P. Madarasi. The distance matching problem. In Mourad Bäıou, Bernard Gen-
dron, Oktay Günlük, and A. Ridha Mahjoub, editors, Combinatorial Optimiza-
tion, pages 202–213, Cham, 2020. Springer International Publishing.

[16] K. Bérczi and T. Schwarcz. Complexity of packing common bases in matroids.
Mathematical Programming, 188(1):1–18, 2021.

[17] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[18] M. Horváth and T. Kis. Polyhedral results for position-based scheduling of chains
on a single machine. Annals of Operations Research, 284(1):283–322, 2020.

EGRES Technical Report No.

	Introduction
	Integrality gap and approximation algorithms
	Hardness of approximation
	Optimal permutations
	(Cyclic) d-distance b-matchings
	Hardness results

	(Cyclic) d-distance b-matchings for small d
	Approximation algorithms for finding a permutation

	Open questions
	Acknowledgement

