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On vertex-coloring {a, b}-edge-weightings of
graphs

Péter Madarasi⋆ and Máté Simon⋆⋆

Abstract

For a given graph G = (V,E), an {a, b}-edge-weighting is an assignment
w : E→ {a, b}, which we call proper if the induced labeling z : V → Z is a proper
vertex coloring of G, where a, b are distinct integers and z(v) =

∑
e∈∆(v) w(e).

Dudek and Wajc [1] proved that deciding whether a given graph G has a
proper {1, 2}-edge-weighting is NP-complete. Strengthening their result, we
show that the problem is NP-complete for any distinct integers a and b.

Thomassen, Wu and Zhang [2] gave a polynomial-time algorithm to decide
whether a given bipartite graph has a proper {1, 2}-edge-weighting. We con-
sider a natural generalization of this problem when a partial edge-weighting
is to be extended, which is shown to be NP-complete for any distinct integers
a, b. We also prove that the problem is solvable in polynomial time for trees.

Keywords: 1-2-3 conjecture, {a, b}-edge-weighting, NP-completeness, Irregular
graphs, Graph coloring

1 Introduction

Throughout this paper, G = (V,E) denotes a simple, finite, undirected graph. A
{1, . . . , k}-edge-weighting is an assignment w which assigns numbers from {1, . . . , k}
to the edges of G. We say that an edge-weighting is proper or feasible if the induced
vertex coloring z : V → Z, where z(v) =

∑
e∈∆(v) w(e), is a proper coloring, that is

z(u) , z(v) holds for every edge uv ∈ E. If G has a proper {1, 2, 3}-edge-weighting,
then we say that G has the 1-2-3 property, which can be similarly defined for any
other weight set as well.
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1.1 Motivation and previous results 2

Karoński, Łuczak and Thomason formulated the so-called 1-2-3 conjecture in
2004 [3], which states that every simple graph without isolated edges has the
1-2-3 property. This conjecture fostered several new interesting questions. The
focus of the present paper is on one of these questions, the existence of {a, b}-edge-
weightings.

In 2011, Dudek and Wajc [1] proved that deciding whether a given graph has
the 1-2 property is NP-complete. To the best of our knowledge, the more general
problem when we ask if a feasible {a, b}-edge-weighting exists, remained open thus
far. As an extension of the results of Dudek and Wajc, Section 2 proves that their
statement also holds for arbitrary a and b.

Furthermore, in 2016 Thomassen, Wu and Zhang [2] proved that deciding whether
a given bipartite graph has the 1-2 property is possible in polynomial-time. More
precisely, they proved that a bipartite graph has the 1-2 property if and only if it
is not a so-called odd multi-cactus. In fact, their approach also extends to {a, b}-
edge-weightings provided that a < b, a is odd and b is even. Recently, Lyngise
showed that exactly the odd multi-cacti have no proper edge-weightings for 2-
connected bipartite graphs when a is odd and b = a + 2 [4], and also for bridgeless
bipartite graphs when a = 0 and b = 1 [5]. Based on these positive results, we
investigate whether a partial edge-weighting is extendable such that the resultant
edge-weighting is proper. In Section 3, we prove that this more general version of
the problem is NP-complete even for bipartite graphs, however, it is polynomial-
time solvable for trees. The latter statement will be proven by giving a dynamic
programming algorithm which runs in polynomial-time. As a special case, this
implies an alternative polynomial-time algorithm to decide whether a tree has the
0-1 property, which was first solved in [5].

The next section gives a brief overview of some of the problems and results
related to the 1-2-3 conjecture.

1.1 Motivation and previous results

The question of the existence of {a, b}-edge-weightings was inspired by the 1-2-3
conjecture, which itself comes from the study of graph “irregularity”. By simple
graph theoretic observations, one can easily show that there exists no “opposite” of
a simple regular graph, that is, a simple graph with all-different degrees. Chartrand
et al. [6], tried to measure how irregular a graph is. In particular, they investigated
the smallest value k such that by replacing each edge with at most k parallel edges,
the resulting G′ multigraph becomes irregular (that is each vertex has a different
degree). The minimum value of k is called the irregularity strength of G, for further
information on this topic see [7], [8] and [9]. Another possible approach is when we
do not require that all vertices in the resulting multigraph have different degrees,
but only that the degrees of the adjacent nodes are different. Notice that instead of
edge multiplication, we can look for a proper {1, . . . , k}-edge-weighting. Exchanging
the weight set {1, . . . , k} to {a, b}, we obtain the {a, b}-edge-weighting problem.

Early articles and results, such as in which the 1-2-3 conjecture was first intro-
duced [3], focus on the relationship between χ(G) and χ∑(G), where χ∑(G) is the
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1.1 Motivation and previous results 3

smallest integer k for which a proper {1, . . . , k}-edge-weighting exists in G. One of
the first results from [3] states the following:

Claim 1.1. Let (Γ,+) be a finite abelian group of odd order, and G be a |Γ|-colorable graph
without isolated edges. Then there exists an edge-weighting of G with the elements of Γ
such that the resultant induced vertex coloring is proper.

Further results in connection with the chromatic number [10]:

Claim 1.2. If G is 2-connected and χ(G) ≥ 3, then χ∑(G) ≤ χ(G). Moreover, for every
integer k ≥ 3 and any graph G without isolated edges the following hold:

1. (Karoński, Łuczak, Thomason [3]) If G is k-colorable for odd k, then χ∑(G) ≤ k;

2. (Duan, Lu, Yu [11]) If G is k-colorable for k ≡ 0 (mod 4), then χ∑(G) ≤ k;

3. (Lu, Yang, Yu [12]) If G is k-colorable, 2-connected and has minimum degree
at least k + 1 for k ≡ 2 (mod 4), then χ∑(G) ≤ k.

The first general upper bound for χ∑(G) was given by Addario-Berry, Dalal,
McDiarmid, Reed and Thomason [13], who proved that χ∑(G) ≤ 30. Their method
is based on the investigation of the so-called degree-constrained subgraph problem,
which was further refined by Addario-Berry, Dalal and Reed [14], who managed to
improve this upper bound to 16, then Wang and Yu [15] further improved it to 13.
The best known upper bound is due to Kalkowski, Karoński and Pfender [16], who
proved that χ∑(G) ≤ 5 holds. In other words, every graph without isolated edges
has the 1-2-3-4-5 property.
Moreover, it is also known that the 1-2-3 conjecture holds if G is large and dense
enough: there exists a constant n′ such that every graph G = (V,E) with at least n′

nodes has the 1-2-3 property if the degree of every node is at least 0.099985|V| [17].
Furthermore, it is known that if G is a random graph (according to the Erdős-
Rényi model), then it has the 1-2 property asymptotically almost surely, see [14].
If we restrict ourselves to regular graphs, then Jakob Przybylo achieved the most
significant progress [18], namely, every regular graph has the 1-2-3-4 property, and
the 1-2-3 conjecture holds if d ≥ 108 and G is d-regular. On the other hand, Dudek
and Wajc [1] showed that deciding whether a given graph has the 1-2 property is
NP-complete. However, based on the result of Thomassen, Wu and Zhang [2], this
problem can be solved in polynomial time for bipartite graphs.

One might also define other kinds of weightings. For example, in the node-
weighting problem, we want to assign weights to the nodes (instead of the edges)
and the labels of the nodes are defined as the sum of the weights of their neighbours.
It was shown in [19] that deciding whether a graph G has a proper node-weighting
from the set {1, . . . , k} is NP-complete for any k ≥ 2. This result holds even if we
restrict ourselves to 3-colorable planar graphs and k = 2. Furthermore, it is also
NP-complete for 3-regular graphs in case of k = 2 [20].

Other problems can be obtained by modifying the definition of the labels of the
nodes. For example, one can take the product of the weights instead of their sum.
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Section 2. {a, b}-edge-weightings in general graphs 4

This way, we obtain the problems called edge-weighting by product and node-weighting
by product. Let us briefly summarize some of the hardness results related to these
problems. It is NP-complete to decide whether a given 3-regular planar graph has
a proper edge-weighting by product from the set {1, 2} [21]. It was shown in [21]
that deciding the existence of {1, 2}-node-weighting by product is NP-complete for
3-colorable planar graphs. Moreover, if we omit the planarity and colorability
conditions but the weights can be chosen from set {1, . . . , k} for some k ≥ 3, then we
still get an NP-complete problem.

2 {a, b}-edge-weightings in general graphs

In 2011, Dudek and Wajc [1] proved that deciding whether a given graph G has the
1-2 property is NP-complete. In this section, we extend this result and prove that
the statement holds for arbitrary a and b. First, we consider the case when a , −1
and b , 1. Then, a fundamentally different reduction will be given to deal with this
exceptional case.

The following claim shows that we can restrict ourselves to the case when a and
b are integers and relative primes.

Claim 2.1. Let a, b be a rational pair. Then for every d , 0, there is one-to-one correspon-
dence between proper {a, b}-edge-weightings and proper {ad, bd}-edge-weightings.

This simple claim holds, since multiplication by d , 0 on all of the edges does not
change the feasibility of an edge-weighting. We say that a and b are relevant if they
are integers, relative primes, at most one of them is negative, a , b and |b| ≥ |a|. By
Claim 2.1, we can assume without loss of generality that a, b are relevant whenever
we consider {a, b}-edge-weightings.

The main result of this paper is the following:

Theorem 2.2. Let a and b be relevant numbers, and let G be an arbitrary simple graph.
Then it is NP-complete to decide whether a proper {a, b}-edge-weighting exists.

The proof of this theorem consists of two parts. First, Theorem 2.3 extends the
proof of Dudek and Wajc to the case when a , −1 and b , 1. Second, the proof of
Theorem 2.6 gives a different reduction for a = −1, b = 1.

Theorem 2.3. Let a and b be relevant numbers such that a , −1 and b , 1 holds. Then it
is NP-complete to decide whether a proper {a, b}-edge-weighting exists.

Proof. The case a = 0, b = 1 is settled in [1], so we can assume that b , 1. The
problem is in NP, since one can easily decide in polynomial time if a given {a, b}-
edge-weighting is feasible. Similarly to the proof in [1], we give a reduction from
the NP-complete 3-COLOR problem, in which we are given a graph G′ = (V′,E′)
and we want to decide if its nodes can be colored with 3 colors such that the colors
of any two adjacent vertices are different. In what follows, we construct a graph
G which has a feasible {a, b}-edge-weighting if and only if the vertices of G′ can be
colored with three colors.
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Section 2. {a, b}-edge-weightings in general graphs 5
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Figure 1: a-forcing gadget

For this purpose we need two gadgets. The first one is called a-forcing gadget,
which is defined in the following way. Take a complete graph on nodes v1, . . . , v2b,
and connect c new leaf nodes u1, . . .uc to v1, where c = b − a. Furthermore, add
two new nodes s1, s2 with an edge between them, and connect s2 to u1. Figure 1
illustrates the construction.

Claim 2.4. In any feasible {a, b}-edge-weighting of the a-forcing gadget, the weight of edge
s1s2 is a. This also holds when the gadget is glued to any graph along node s1.

Proof. As the degrees of nodes v2, . . . , v2b are all 2b − 1, their possible labels in
any feasible {a, b}-edge-weighting are of the form xa + (2b − 1 − x)b for some x ∈
{0, . . . , 2b − 1}. In addition, the labels of any two of these nodes must be distinct as
they induce a complete graph. Furthermore, labels (2b − 1)a and (2b − 1)b may not
appear simultaneously, because these correspond to the cases x = 0 and x = 2b − 1,
respectively, which would in turn mean that the incident edges of a node are all
weighted a, while the incident edges of another node are all weighted b, which is
clearly not possible. In fact, the number of nodes at hand is 2b − 1 and the number
of possible labels are 2b, therefore exactly one of labels (2b − 1)a and (2b − 1)b must
appear.

First, consider the case when (2b − 1)a appears as one of the labels of nodes
v2, . . . , v2b and (2b − 1)b does not. By symmetry, one can prescribe that the label of
vi is

z(vi) = (i − 1)a + (2b − i)b

for i = 2, . . . , 2b. We prove by induction on b that there is a unique {a, b}-edge-
weighting which generates these very labels, and the sum of the weights of the
edges induced by v1 and some node v2, . . . , v2b is ba + (b − 1)b. For b = 1, the claim
holds because the label of v2 is prescribed to be a, hence the only edge incident to
it must have weight a. For the inductive step, assume that b ≥ 2 and the statement
holds for b−1. The labels of v2 and v2b are prescribed to be a+ (2b−2)b and (2b−1)a,
respectively. Therefore the weights of all edges incident to v2b must be a, and hence
the weights of all edges incident to v2 must be b except for edge v2bv2, which is
already set to a. Observe that removing v2 and v2b, one can inductively apply the
statement for v3, . . . , v2b−1 where the label of vi is prescribed to be (i−2)a+(2b− i−1)b.
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Section 2. {a, b}-edge-weightings in general graphs 6

By induction, we get that there exists a unique {a, b}-edge-weighting in this smaller
instance, and also that the sum of the weights of the edges induced by v1 and some
node v3, . . . , v2b−1 is (b − 1)a + (b − 1 − 1)b. Putting back nodes v2 and v2b, one gets
that there exists a unique edge-weighting with the prescribed labels, because the
weights of the edges incident to v2 and v2b are uniquely determined by the label-
prescription, and the uniqueness of the weighting of the rest of the edges follows
by the inductive step. Furthermore, the sum of the weights of the edges induced by
v1 and some node v2, . . . , v2b is (b− 1)a+ (b− 1− 1)b+ a+ b = ba+ (b− 1)b, which was
to be proven. This immediately implies that the only valid setting of the weight of
edge u jv1 is b for all j = 1, . . . , c, since if the weight of exactly j such edges are a,
then the label of v1 would be ba+ (b− 1)b+ ja+ (b− a− j)b = ja+ (2b− 1− j)b, which
does not conflict with any of the labels of v2, . . . , v2b only if j = 0. Meaning that the
weight of edge u jv1 must be b for all j = 1, . . . , c.

In the second case, (2b− 1)b is one of the labels of nodes v2, . . . , v2b and (2b− 1)a is
not. Along the lines of the first case, one can prove by induction on b that the sum
of the weights of the edges induced by v1 and some node v2, . . . , v2b is bb + (b − 1)a.
But just like in the previous case, this means that the weight of edge u jv1 must be b
for all j = 1, . . . , c, otherwise there would exist a vertex u ∈ v2, . . . , v2b whose label is
the same as the label of v1.

In both cases, the weight of edge u jv1 is b for all j = 1, . . . , c. Hence the weight of
s1s2 must be a, and that of s2u1 can be always chosen appropriately. Furthermore,
we did not utilize that s1 is a leaf node, hence the second part of the claim follows
as well, which completes the proof. □

Notice that by removing nodes s1 and s2 along with the two incident edges, we
obtain the so-called b-forcing gadget, in which the weight of edge v1u1 must be b in
any feasible {a, b}-edge-weighting.

We need one more gadget for the reduction, which is called k-excluding gadget.
The k-excluding gadget will have a root node, which will be unified with a vertex
of the original graph, and it achieves that the label of the root node cannot be k.
For a, b and k = xa + yb (x, y ∈ N), the construction of the k-excluding gadget is
as follows. Start with the root node r and two more nodes u, v. Add edges ru,uv
and rv, so that we get a triangle. Add (x − 1) copies of the a-forcing gadgets and
(y − 1) copies of the b-forcing gadgets, and unify all the s1 nodes of the a-forcing
gadgets and all the u1 nodes of the b-forcing gadgets with node u. Repeat the same
procedure for node v instead of u. Notice that the label of node r must be different
from k, because regardless of how we weight edge uv, one of ru and rv must have
weight a and the other one must have weight b. In addition, one can also show that
the gadget forbids no other labels at node r — which will be useful when we glue
the gadget to other graphs.

Now we have all the tools required to define a graph G which has a proper
{a, b}-edge-weighting if and only if the nodes of G′ can be colored with 3 colors. Let
G′ = (V′,E′) and n = |V′|. Without loss of generality, suppose that n ≥ 3. Our graph
G will be obtained by extending the original graph G′ with additional edges and
vertices as follows.
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Section 2. {a, b}-edge-weightings in general graphs 7

To define G, modify G′ in the following way. For every v ∈ V′

1. Add two new vertices sv and tv, then connect them to v.

2. Let Uv be a new vertex set of size n − 1 − dG′(v) and connect every element of
Uv to v.

3. Add n− 1 new k-excluding gadgets for every k = xa+ yb, where x+ y = 3n− 1
and y runs from n + 2 to 2n. Unify the roots of these k-excluding gadgets
with v.

Notice that the construction of G can be done in polynomial-time, since a and
b are constants. Next, we formulate an important lemma concerning the possible
labels of those nodes in G which were inherited from the original graph G′.

Lemma 2.5. Let G = (V,E) be the graph we obtained above. Then in every feasible
{a, b}-edge-weighting of G, the following holds for every v ∈ V ∩ V′:

z(v) ∈ {2na + (n − 1)b, (2n − 1)a + nb, (2n − 2)a + (n + 1)b}.

Proof. Let v ∈ V ∩ V′ an arbitrary node. Then w(svv) + w(vtv) ∈ {2a, a + b, 2b}, where
sv and tv are the nodes defined above in 1. By the construction of G, there are n − 1
edges incident to v which go to Uv ∪ (V ∩V′). Furthermore, each of the n− 1 copies
of the k-excluding gadget connected to v adds a+ b to the label of v. Since there are
no other edges incident to v, it follows that

{2a, a + b, 2b} + {xa + yb | x + y = n − 1, y = 0, . . . ,n − 1} + (a + b)(n − 1) = (1)

= {xa + yb | x + y = 3n − 1, y = n − 1, . . . , 2n},

where by the sum of two or more sets we now mean the set whose elements can
be obtained by taking one element from each set and then adding them together.
Observe that z(v) < {xa+ yb | x+ y = 3n− 1, y = n+ 2, . . . , 2n} due to the k-excluding
gadgets incident to v, according to 3. From this, we get that

z(v) ∈ {2na + (n − 1)b, (2n − 1)a + nb, (2n − 2)a + (n + 1)b},

which was to be proven. □

It remains to show that the nodes of G′ can be colored with 3 colors if and only if
there exists a feasible {a, b}-edge-weighting in G.

First suppose that the nodes of G′ can be colored with 3 colors. Without loss of
generality let the colors be 2na+(n−1)b, (2n−1)a+nb, and (2n−2)a+(n+1)b. We will
show that the edges of G can be weighted so that the induced labels obtained by this
weighting match the original colors of the vertices, thus meaning that there exists
a proper edge-weighting. We weight the edges as follows: For every e ∈ E ∩ E′,
let w(e) = a. For every edge which is incident to the vertices in Uv, let w(e) = a.
Moreover, for every v ∈ V ∩ V′,

• if χ(v) = 2na + (n − 1)b, then let w(vsv) = w(vtv) = a;
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Section 2. {a, b}-edge-weightings in general graphs 8

• if χ(v) = (2n − 1)a + nb, then let w(vsv) = a and w(vtv) = b;

• otherwise, χ(v) = (2n − 2)a + (n + 1)b, when we set w(vsv) = w(vtv) = b,

where χ(v) is the color of v.
This (partial) edge-weighting can be extended to the rest of the edges, since

we have already seen that the k-excluding gadget forbids only label k at its root
node. Moreover, the weight of edge s2u1 in every a-forcing gadget can be chosen
properly, and similarly, the edges of the b-forcing gadgets can be weighted in two
different ways — one of which will be always feasible. We now prove that the
edge-weighting obtained as defined above is indeed proper. For any v ∈ V′ ∩ V
there are (n − 1) edges coming from Uv or inside of G′ with weight a. From every
k-excluding gadget, two edges come into v: one with weight a, the other one with
weight b, and there are (n − 1) of them in total. Thus, adjusting the weights of the
edges coming from sv and tv, we can achieve that z(v) = χ(v). We have seen above
that the weights of the rest of the edges of the gadgets can be chosen properly as
well. Lastly, every other node has degree one, while the degree of their neighbours
are strictly greater than one. So z(u) , z(v) for any edge uv in G, that is, w is a proper
{a, b}-edge-weighting.

Second, if G cannot be colored with 3 colors, then there is no feasible {a, b}-edge-
weighting of G by Lemma 2.5. □

Next, we settle the case of a = −1, b = 1.

Theorem 2.6. Let G = (V,E) be a simple graph. It is NP-complete to decide if G has a
{−1, 1}-edge-weighting.

Proof. Clearly, the problem is in NP, since one can easily decide in polynomial time
if a given edge-weighting is feasible. To prove the hardness of the problem, we
give a reduction from the NP-complete NAE-3SAT3 problem. Here we are given
a conjunctive normal form in which each clause is of size 3 and each variable
appears exactly 3 times. The goal is to find an assignment of the variables such
that every clause has at least one true and at least one false literal. The hardness
of this problem immediately follows from the NP-completeness of the Monotone
NAE-3SAT problem in which every variable appears in exactly 3 clauses, every
literal is positive, and the size of each clause is either 2 or 3 [22]. We construct a
graph G which has a proper {−1, 1}-edge-weighting if and only if the NAE-3SAT3
instance has a feasible solution. To this end, we need two gadgets.

The first gadget is the so-called {−3, 3}-excluding graph, which is shown in Fig-
ure 2. We claim that, in any feasible {−1, 1}-edge-weighting, exactly one of v2 and
v9 has label 4, the other one −4. Edge v7v8 ensures that the labels of edges v2v7 and
v8v9 are different, that is, w(v2v7) = −w(v8v9). By symmetry, we can assume that
w(v2v7) = 1. Observe that w(v1v2) = 1 — otherwise w(v1v2) + w(v2v7) = 0 would
imply that the C5 incident to v2 has a feasible edge-weighting, which is not possible.
Simple enumeration of cases shows that w(v2v3) = w(v2v6) = 1:

• If w(v2v3) = w(v2v6) = 1, then setting w(v3v4) = 1, w(v4v5) = −1 and w(v5v6) =
−1 one obtains a feasible edge-weighting.
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Figure 2: {−3, 3}-excluding gadget

• If w(v2v3) , w(v2v6), then we can assume that w(v2v3) = 1 and w(v2v6) = −1.
As w(v1v2) = 1 and w(v2v7) = 1, it follows that w(v3v4) = −1 and w(v4v5) = −1,
but then neither w(v5v6) = 1 nor w(v5v6) = −1 is feasible.

• If w(v2v3) = w(v2v6) = −1, then w(v3v4) = −1,w(v4v5) = 1 follows and hence
neither w(v5v6) = 1 nor w(v5v6) = −1 is feasible.

Therefore, w(v2v3) = w(v2v6) = 1 follows. This means that z(v2) = 4 and, by
symmetry, z(v9) = −4. Hence, one of v2 and v9 has label 4, and the other one has
label −4, as we claimed. Moreover, there exists a feasible {−1, 1}-edge-weighting of
the {−3, 3}-excluding gadget such that the label of v2 is 4 and that of v9 is −4. The
opposite of this weighting is also feasible and the label of v2 is −4 and that of v9 is 4.

The second gadget, the so-called 6-equal graph, is shown in Figure 3. We claim
that the weights of the six leaf edges must be either all −1 or all 1 in any {−1, 1}-
edge-weighting. First, observe that the possible labels of nodes v2, . . . , v7 are distinct
values from the set {−6,−4,−2, 0, 2, 4, 6}. Furthermore, −6 and 6 may not appear
simultaneously, because we cannot have two nodes whose incident edges are either
all 1 or all −1. This also means that all labels {−4,−2, 0, 2, 4} must appear. Assume
that label 6 appears among the labels and −6 does not. By symmetry, we can also
assume that the labels of v2, . . . , v7 are −4,−2, 0, 2, 4, 6, respectively. This means that
exactly i edges among the six edges incident to vi have weight 1 for i = 2, . . . , 7.
This immediately implies that the sum of the weights of the edges between v1 and
v2, . . . , v7 are zero, and hence the sum of the weights of the leaf edges must be −6 —
otherwise, it would be −4,−2, 0, 2, 4 or 6, any of which would conflict with the label
of v2, . . . , v6 or v7. Note that there exists a feasible {−1, 1}-edge-weighting of the
6-excluding gadget such that the weights of the leaf edges are all −1, furthermore,
the opposite of this weighting is also feasible and all the leaf edges have weight 1.

Now, we describe the construction of the graph which has a proper {−1, 1}-edge-
weighting if and only if the instance of NAE-3SAT3 is solvable. Let x1, . . . , xn

denote the variables and let C1, . . . ,Ck denote the clauses. For each variable xi, let
us introduce a copy of the 6-equal gadget, and for each clause C j, a copy of the
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v1
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u5

u4

u3

u2

u1

Figure 3: 6-equal gadget

{−3, 3}-excluding gadget. For each variable xi, unify one of the leaf nodes of the
{−3, 3}-excluding gadget of xi and one of the leaf nodes of all the 6-equal gadgets
associated with the clauses including xi or ¬xi. Repeat the same procedure for the
other leaf node of the {−3, 3}-excluding gadget of xi. Finally, if xi appears negated
in C j, then subdivide with two-two new nodes the two edges between the gadget
associated with xi and the gadget associated with C j, which are incident with the
K7 graphs. Figure 4 gives an example for this construction.

To complete the proof, we show that this graph has a feasible {−1, 1}-edge-
weighting if and only if the NAE-3SAT3 instance is solvable. On the first hand,
assume that the NAE-3SAT3 instance has a feasible solution. For each variable xi,
set the weights of all 6 leaf edges of the 6-equal gadget to 1 if xi is assigned true,
and −1 if it is assigned false. The rest of the edges of the 6-equal gadgets can be
weighted feasibly, since the leaf nodes of each gadget are either all 1 or all −1. For
each subdivided edge, let the weight of the subdivision incident to a leaf node of the
{−3, 3}-excluding gadget be the opposite of the weight of the subdivision incident to
the 6-equal gadget. Since each clause C j must contain at least one true and at least
one false literal, the weight of the leaf nodes of the {−3, 3}-excluding gadget associ-
ated with C j may only be −2, 0 or 2. Therefore, the current edge-weighting can be
extended to the rest of the edges of the {−3, 3}-excluding gadgets. Clearly, we can set
the weight of the middle subdivision of the subdivided edges such that no conflict
arises (since at most one of −1 and 1 is excluded by the label of the leaf node of the
{−3, 3}-excluding gadget). This way one obtains a feasible {−1, 1}-edge-weighting,
which was to be shown.

On the other hand, let us given a feasible {−1, 1}-edge-weighting of the graph.
For each variable xi, set xi to true if the leaf edges of the 6-equal gadget associated
with it are all 1, otherwise, they are all −1 by the construction of the 6-equal gadget,
and let xi be false. This way a feasible solution to the NAE-3SAT3 problem is
obtained. All we need to verify is that each clause C j contains at least one true
and at least one false literal. Consider the two leaf nodes u and v of the {−3, 3}-
excluding gadget associated with C j. By the construction of the gadget, the sum of
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x1

C1

x2

C2

x3

C3

x4

C4

Figure 4: Illustration of the construction in the proof of Theorem 2.6 for the NAE-
3SAT3 instance C1 ∧ C2 ∧ C3 ∧ C4, where C1 = (x1 ∨ x2 ∨ x3),C2 = (x1 ∨ x2 ∨ x4),C3 =
(x1 ∨ x3 ∨ x4) and C4 = (x2 ∨ x3 ∨ ¬x4).

the weights of the edges incident to u is neither −4 nor 4, and the same holds for v.
This means that at least one of the incident edges has weight 1 and at least one has
weight −1. Consider an incident edge, and let xi be the variable associated with
the corresponding 6-equal gadget. If this edge was not subdivided, then its weight
is 1 if and only if xi was set to true. Whereas, if the edge was subdivided, then its
weight is 1 if and only if xi was set to false. As the edge is subdivided if and only if
xi is negated in C j, no clause exists with all true or all false literals. This completes
the proof of the theorem. □

3 Extending partial edge-weightings

Thomassen, Wu and Zhang [2] proved in 2016 that deciding whether a given
bipartite graph has the 1-2 property is possible in polynomial time, while the
same problem for arbitrary graphs is NP-complete [1]. Motivated by the former
statement, this section investigates whether a partial {a, b}-edge-weighting can be
extended on bipartite graphs, where by a partial {a, b}-edge-weighting we mean
that on a subset of the edges we fix the labels in advance. We will prove that this
problem is NP-complete even for bipartite graphs, but polynomial-time solvable
on trees for any rational a, b. First of all, let us outline the basic problem, which has
not been addressed in the literature yet, as far as we know.

Problem 3.1. Given a graph G with some of its edges already labeled from set {a, b},
where a, b are two rational numbers. The question is if we can assign weights from
{a, b} to the uninitialized edges such that the induced coloring is proper.

Theorem 3.2. Problem 3.1 is NP-complete for bipartite graphs.

Proof. The polynomial reduction will be given from the NP-complete degree-
prescribed subgraph problem [23]. In this problem, the goal is to find a subgraph
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H = (V,E′) of a given graph G = (V,E) such that the degree of every vertex v in H is
from a predefined degree set Fv ⊆ {0, . . . , dG(v)}, that is, dH(v) ∈ Fv for every v in V.
Let v1, . . . , vn denote the nodes in V.

Without loss of generality, we can assume that G is bipartite. Otherwise, one can
replace each edge with a path of length two. We keep the original Fvi sets for vi ∈ V,
and define Fu as {0, 2} on each newly created vertex u. This newly created degree-
prescribed subgraph problem is defined on a bipartite graph, and it is equivalent
to the original one.

Given an instance of the degree-prescribed subgraph problem G,F, we construct
a graph G′ and a partial {a, b}-edge-weighting which is extendable to a proper
edge-weighting if and only if the degree-prescribed subgraph problem is solvable.
Suppose that a and b are relevant. First, observe that the problem is in NP, since if an
oracle gives an extended {a, b}-edge-weighting, then it can be decided in polynomial
time whether the weighting is feasible.

We begin the construction of G′ with a copy of G, and for every vi ∈ V, we modify
G′ as follows. Add iM new leaf nodes connected only to vi, where M = 2n. Let
Di denote the set of these newly added vertices. Initialize the labels of the edges
incident to Di with b. For all x ∈ {0, 1 . . . , dG(vi)}, if x < Fvi , then choose one of the
previously-added leaf nodes u, which has not yet been chosen (such a leaf node
u always exists, because |Fvi | ≤ M), and add (dG(vi) + iM − 1) new leaf nodes only
connected to u. Let the labels of (iM + x − 1) of these edges be b, and let the labels
of the remaining (dG(vi)− x) edges be a. Clearly, one can construct G′ in polynomial
time. In the rest of this proof, we show that the partial edge-weighting can be
extended in G′ if and only if the degree-prescribed subgraph problem can be solved
for G and F.

First, assume that the degree-prescribed subgraph problem is solvable for G and
F, and let H denote a feasible solution. To extend the partial {a, b}-edge-weighting of
G′ to a proper weighting, set the labels of the uninitialized edges of G′ — which are
the edges of G by the construction of G′ — in the following fashion: for each such
edge e, if e is contained in H, then let w(e) be b, otherwise a. We show that this {a, b}-
edge-weighting is proper. In G′, there cannot be a collision between two vertices
which are both in the original graph, because M was defined as 2n, and hence the
induced color of any two nodes of the original graph are different. To show this,
it suffices to prove that there cannot be a collision between any two consecutive
vertices vi, vi+1. The largest possible label of vi is Ui = (2in + n − 1)b, since the
contribution of the newly added edges is at most 2nib, while that of the edges of
the original graph is at most (n− 1)b. On the other hand, the smallest possible label
of vi+1 is 1) Li+1 = 2(i + 1)nb + a if a is non-negative or 2) Li+1 = (2in + n + 1)b if a is
negative — which can be attained when |a| = |b|. In both cases, we can see that Li+1

is strictly greater than Ui, that is zvi+1 > zvi in any proper {a, b}-edge-weighting, since
Li+1 ≤ zvi+1 and Ui ≥ zvi .
Observe that there is no collision between vi and the nodes in Di, because the
label of vi is bdH(vi) + a(dG(vi) − dH(vi)) + biM and the label of the nodes in Di are
{by + a(dG(vi) − y) + biM : y ∈ {0, . . . , dG(vi)} \ Fvi} by the construction. This set does
not contain the label of vi, because dH(vi) ∈ Fvi and dG′(vi) = dG′(ui) for all ui ∈ Di.
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Second, assume that the partial edge-weighting of G′ can be extended feasibly.
Then let H be the subgraph of G consisting of the edges with weight b. The subgraph
H obtained this way is a solution to the degree-prescribed subgraph problem, since
as we have seen above, node vi is not allowed to have exactly x + iM edges with
weight b if x is not in Fvi , thus dH(vi) must be in Fvi for every i. □

3.1 Extendability on trees

Theorem 3.2 shows that Problem 3.1 is NP-complete on bipartite graphs. In this
section, we investigate the same problem on trees, and we give a polynomial-
time algorithm which, for a given tree and integer numbers a, b, either completes
a given partial {a, b}-edge-weighting or concludes that no such weighting exists.
As a special case, one obtains a new method to decide whether a tree has the 0-1
property, which was first shown to be polynomial-time solvable in [5].

Theorem 3.3. Problem 3.1 can be solved in polynomial time on trees for any integers a, b.

Proof. We give a dynamic programming algorithm which either extends the partial
a, b weighting into a feasible one or concludes that it cannot be extended. Let us
appoint one of the leaf nodes as the root of the tree and let Tv denote the subtree
beneath v. For every edge uv, let Luv ⊆ {a, b} denote the set of the allowed labels at
uv based on the partially initialized edge-weighting. We want to decide if Tv can be
extended feasibly such that we fix the weight of uv and the sum of the weights on
the edges incident to v, where u is closer to the root than v is. Formally, for every
edge uv, we define a subproblem f (uv) as the set of those (k, l) ∈ Z × {a, b} pairs for
which there exists a weighting of Tv such that w(uv) = l ∈ Luv and z(v) = k − l.

For a given edge uv, let ei denote the edge between v and its children v′i for
i = 1, . . . , d(v)−1. Notice that (k, l) ∈ f (uv) if and only if the following two conditions
hold:

1. For every i = 1, . . . , d(v) − 1, there exists a weight li ∈ Lei and label ki ∈ Z\{k}
such that (ki, li) ∈ f (ei), and

2.
∑

li = k − l,

which gives a way to recursively compute f (uv) in polynomial time, because these
conditions can be checked efficiently as follows. There exist unique integers α and
β for which

a · α + b · β = k − l
α + β = d(v) − 1

(2)

hold, because (k, l) ∈ f (uv). That is, out of e1, . . . , ed(v)−1 exactly α have weight a, and
β are weighted b. Let Lk

ei
⊆ Lei denote the possible weights of ei if z(v′i) , k, and

observe that (k, l) ∈ f (uv) if and only if Lk
ei
, ∅, |{i : a ∈ Lk

ei
}| ≥ α and |{i : b ∈ Lk

ei
}| ≥ β

hold for every i = 1, . . . , d(v) − 1. For any ei and k, Lk
ei

can be easily computed by
iterating through f (ei), therefore we obtain an algorithm to compute f (uv) running
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in O(n2) steps, provided that the subproblems are computed in increasing order by
the depth of the subtrees Tv.

For the base case of the recursion, if subtree Tv consist of a single node for uv,
then f (uv) = {(l, l) : l ∈ Luv} by definition.

Once f (uv) is computed for all uv ∈ E, there exists a feasible extension of the
partial edge-weighting if and only if there exists (k, l) ∈ f (e) such that k , l, where e
is the leaf edge incident to the root. This means that the labels of the two endpoints
of e are different in the weighting provided by the fact that (k, l) ∈ f (e). Otherwise,
if k = l for all (k, l) ∈ f (e), then f (e) is either empty or the endpoints of e have the
same label in each feasible weighting, which means that no feasible extension of the
partial edge-weighting exists. Computing a subproblem f (uv) takes O(n2) steps,
hence the total running time of the algorithm is O(n3). □

Note that Theorem 3.3 easily extends to the minimum-cost version of the problem
in which each weight-edge assignment has an associated cost, and the total cost of
the {a, b}-edge-weighting is to be minimized.

4 Conclusion

This paper presented some progress in terms of the hardness of finding {a, b}-
edge-weightings, and proposed the question of the extendability of a partial edge-
weighting in bipartite graphs.

As a generalization of the result of Dudek and Wajc [1], we proved that it is
NP-complete to decide whether a graph has a proper {a, b}-edge-weighting.

If we restrict ourselves to bipartite graphs, then Thomassen, Wu and Zhang [2]
proved that it can be decided in polynomial-time if a given bipartite graph has the
1-2 property. More precisely, a bipartite graph has the 1-2 property if and only if
it is not a so-called odd multi-cactus. Their approach also extends to {a, b}-edge-
weightings provided that a < b, a is odd and b is even. Since then, significant
progress has been made regarding the missing cases. Lyngise showed that ex-
actly the odd multi-cacti have no proper edge-weightings for 2-connected bipartite
graphs when a is odd and b = a+2 [4], and also for bridgeless bipartite graphs when
a = 0 and b = 1 [5]. The general case, however, remains open. As a generalization
of the {a, b}-edge-weighting problem on bipartite graphs, we asked whether a par-
tial {a, b}-edge-weighting of a bipartite graph can be extended. This problem was
shown to be NP-complete, and a polynomial-time algorithm was given for trees.
As a special case, the latter result implies an alternative polynomial-time algorithm
to decide whether a tree has the 0-1 property, which was first solved in [5].
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