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Péter Madarasi

April 2021
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Matchings under distance constraints I.

Péter Madarasi

Abstract

This paper introduces the d-distance matching problem, in which we are
given a bipartite graph G = (S, T ;E) with S = {s1, . . . , sn}, a weight function
on the edges and an integer d ∈ Z+. The goal is to find a maximum-weight
subset M ⊆ E of the edges satisfying the following two conditions: i) the degree
of every node of S is at most one in M , ii) if sit, sjt ∈M , then |j− i| ≥ d. This
question arises naturally, for example, in various scheduling problems.

We show that the problem is NP-complete in general and admits a simple
3-approximation. We give an FPT algorithm parameterized by d and also show
that the case when the size of T is constant can be solved in polynomial time.
From an approximability point of view, we show that the integrality gap of
the natural integer programming model is at most 2 − 1

2d−1 , and give an LP-
based approximation algorithm for the weighted case with the same guarantee.
A combinatorial (2 − 1

d)-approximation algorithm is also presented. Several
greedy approaches are considered, and a local search algorithm is described
that achieves an approximation ratio of 3/2 + ε for any constant ε > 0 in the
unweighted case. The novel approaches used in the analysis of the integral-
ity gap and the approximation ratio of locally optimal solutions might be of
independent combinatorial interest.

Keywords: Distance matching, Restricted matching, Restricted b-matching,
Constrained matching, Scheduling, Parameterized algorithms, Approximation
algorithms, Integrality gap

1 Introduction

In the perfect d-distance matching problem, one is given a bipartite graph G =
(S, T ;E) with S = {s1, . . . , sn}, T = {t1, . . . , tk}, a weight function on the edges
w : E → R+ and an integer d ∈ Z+. The goal is to find a maximum-weight
subset M ⊆ E of the edges such that the degree of every node of S is one in
M and if sit, sjt ∈ M , then |j − i| ≥ d. In the (non-perfect) d-distance match-
ing problem, some of the nodes of S might remain uncovered. Note that the order
of nodes in S = {s1, . . . , sn} affects the set of feasible d-distance matchings, but
the order of T = {t1, . . . , tk} is indifferent. For example, Figure 1a is a feasible
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s1 s2 s3 s4 s5

t1 t2 t3

(a) A feasible perfect 3-distance matching.

s1 s2 s3 s4 s5

t1 t2 t3

(b) An infeasible 3-distance matching.

Figure 1

perfect 3-distance matching, but the example shown in Figure 1b is not, because
edges s1t2 and s3t2 violate the 3-distance condition.

An application of this problem for w ≡ 1 is as follows. Imagine n consecutive
all-day events s1, . . . , sn each of which must be assigned one of k watchmen t1, . . . , tk.
For each event si, a set of possible watchmen is given — those who are qualified to be
on guard at event si. Appoint exactly one watchman to each of the events such that
no watchman is assigned to more than one of any d consecutive events, where d ∈ Z+

is given. In the weighted version of the problem, let wsitj denote the level of safety
of event si if watchman tj is on watch, and the objective is to maximize the level of
overall safety.

As another application of the above question, consider n items s1, . . . , sn one after
another on a conveyor belt, and k machines t1, . . . , tk. Each item si is to be processed
on the conveyor belt by one of the qualified machines N(si) ⊆ {t1, . . . , tn} such that if
a machine processes item si, then it can not process the next d− 1 items — because
the conveyor belt is running.

Motivated by the first application, in the cyclic d-distance matching problem the
nodes of S are considered to be in cyclic order. The focus of this paper is on the
above (perfect) d-distance matching problem, but some of the proposed approaches
also apply for the cyclic case. In particular, the 3-approximation greedy algorithm
achieves the same guarantee for the weighted cyclic case (see Section 3.3), and the
(3/2 + ε)-approximation algorithm for the unweighted case (see Section 4.2).

Previous work Observe that in the special case d = |S|, one gets the classic (per-
fect) bipartite matching problem. For d = 1, the problem reduces to the b-matching
problem, and one can show that it is a special case of the circulation problem for
d = 2. This implies that the problem is solvable in strongly polynomial time for
d = 1, 2, since the circulation problem can be solved in strongly polynomial time [13]
and the b-matching problem is a special case of it.

A feasible d-distance matching M can be thought of as a b-matching that contains
none of the subgraphs {({si, sj}, {t}; {sit, sjt}) : sit, sjt ∈ E and |i − j| ≤ d}, where
bs = 1 for s ∈ S and bt = |S| for t ∈ T . A similar problem is the Kp,p-free p-matching
problem [11]. Here one is given an arbitrary family T of the subgraphs of G isomorphic
with Kp,p, and the goal is to find a maximum-cardinality b-matching which induces
no subgraph of T , where b : S ∪ T −→ {0, . . . , p}. This problem can be solved in
polynomial time. Note that in the distance matching problem, b is different, and the
type of the forbidden subgraphs is K2,1.
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Another similar problem is the following. Given a partition E1, . . . , Ek of E and
positive integers r1, . . . , rk, find a perfect matching M for which |M ∩ Ei| ≤ ri. The
problem is introduced and shown to be NP-complete in [8]. Note that the side con-
straints in the distance matching problem are similar, but the degree constraints are
different and our edge sets do not form a partition of E.

Several other versions of the ”restricted” (b-)matching problem have been intro-
duced, for example in [2, 3, 6, 12].

The perfect d-distance matching problem is a special case of the list-coloring prob-
lem on interval graphs [14]. Here a proper vertex coloring must be found for which the
color of each node v is chosen from a predefined list of colors Cv. Given an instance
of the d-distance matching problem, we construct an interval graph H = (V, F ) such
that there is a one-to-one correspondence between perfect d-distance matchings of
G = (S, T ;E) and proper list colorings of H. Let the nodes of H be the intervals
{Rd(s) : s ∈ S}, where Rd(si) = {si, . . . , smin(i+d−1,|S|)} for i = 1, . . . , n, and let two
distinct nodes Rsi , Rsj ∈ V be connected by an edge if and only if Rsi ∩ Rsj 6= ∅.
Finally, let the list of possible colors of node Rd(si) be the neighbors of si in G. Ob-
serve that two nodes si, sj ∈ S can be assigned to the same node of T in a distance
matching M if and only if there is no edge between Rd(si) and Rd(sj) in F . The
latter holds, however, if and only if nodes Rd(si) ∈ V and Rd(sj) ∈ V can be assigned
color t simultaneously in a proper list coloring of H (note that t is in both lists of
colors). Hence, there is a one-to-one correspondence between the perfect d-distance
matchings of G and the proper list colorings of H.

The perfect d-distance matching problem is also a special case of the frequency
assignment problem [1]. Let S = {s1, . . . , sn} be a set of antennas and let T =
{t1, . . . , tk} be a set of frequencies. There is an edge between s ∈ S and t ∈ T
if antenna s can be set to frequency t. We are also given an interference graph of
the antennas, in which two antennas are connected if and only if they may interfere
with each other. The goal is to assign a frequency to each antenna such that no two
interfering antennas are assigned the same (or in a certain sense similar, see [1])
frequency. To reduce the d-distance matching problem to the frequency assignment
problem, let two antennas si, sj interfere if and only if |i − j| ≤ d. This corresponds
to the setting on the plane when antennas s1, . . . , sn are located along a straight
line in this order such that the Euclidean distance between si and si+1 is one for
i = 1, . . . , n−1, and two antennas may interfere if and only if their Euclidean distance
is at most d. By this construction, there exists a feasible frequency assignment (in
which no two interfering antennas are assigned the same frequency) if and only if
there exists a perfect d-distance matching.

Our results This paper settles the complexity of the distance matching problem
and gives an FPT algorithm parameterized by d. An efficient algorithm for constant
T is also given. We present an LP-based (2 − 1

2d−1
)-approximation algorithm for

the weighted distance matching problem, which implies that the integrality gap of
the natural IP model is at most 2 − 1

2d−1
. An interesting alternative proof for the

integrality gap is also given. We also describe a combinatorial (2− 1
d
)-approximation
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algorithm for the weighted case. One of the main contributions of the paper is a
(3/2 + ε)-approximation algorithm for the unweighted case for any constant ε > 0 in
the unweighted case. The proof is based on revealing the structure of locally optimal
solutions recursively. A generalization of Kőnigs edge-coloring theorem [5, Page 74]
is given to the distance matching problem, as well.

Notation Throughout the paper, assume that G = (S, T ;E) contains no loops or
parallel edges, unless stated otherwise. Let ∆(v) and N(v) denote the set of incident
edges to node v and the neighbors of v, respectively. For a subset X ⊆ E of the edges,
NX(v) denotes the neighbors of v for edge set X. We use deg(v) to denote the degree
of node v. Let Ld(si) = {smax(i−d+1,1), . . . , si} and Rd(si) = {si, . . . , smin(i+d−1,|S|)}.
The maximum of the empty set is −∞ by definition. Given a function f : A → B,
both f(a) and fa denote the value f assigns to a ∈ A, and let f(X) =

∑
a∈X f(a) for

X ⊆ A. Let χZ denote the characteristic vector of set Z, i.e. χZ(y) = 1 if y ∈ Z, and
0 otherwise. Occasionally, the braces around sets consisting of a single element are
omitted, e.g. χe = χ{e} for e ∈ E.

2 Complexity

This section settles the complexity of the d-distance matching problem. First, we
introduce the following NP-complete problem.

Lemma 2.1. Given a bipartite graph G = (S, T ;E) and S1, S2 ⊆ S such that
S1 ∪ S2 = S, it is NP-complete to decide if there exists M ⊆ E for which |M | = |S|
and both M ∩ E1 and M ∩ E2 are matchings, where Ei denotes the edges induced by
T and Si for i = 1, 2. The problem remains NP-complete even if the maximum degree
of the graph is at most 4.

Proof. We reduce the 3-Dimensional Matching problem to the problem defined in
the lemma statement. Here, one is given three finite disjoint sets X, Y, Z and a set
of hyperedges H ⊆ X × Y × Z. A subset of the hyperedges F ⊆ H is called 3-
dimensional matching if x1 6= x2, y1 6= y2 and z1 6= z2 for any two distinct triples
(x1, y1, z1), (x2, y2, z2) ∈ F . Being one of Karp’s 21 NP-complete problems [9], it is
NP-complete to decide whether there exists a 3-dimensional matching F ⊆ H of size
|Z|. In fact, the problem remains NP-complete even if no element of X ∪ Y ∪ Z
occurs in more than three triples in H [7, Page 221]. Without loss of generality,
one might assume that |X| = |Y | = |Z|. Let Hz = {ez1, . . . , ezkz} denote the set of
hyperedges incident to z ∈ Z, i.e. Hz = H∩ (X×Y ×{z}) for each z ∈ Z. To reduce
the 3-dimensional matching problem to the above problem, consider the following
construction.

First define a bipartite graph G = (S, T ;E) where S = X ∪ (H\ {ez1 : z ∈ Z})∪ Y ,
T = H and E is as follows. For each s ∈ S ∩ (X ∪ Y ), add an edge between s and
all the hyperedges e ∈ T incident to s; and connect each ezi ∈ S ∩ H to hyperedges
ezi−1, e

z
i ∈ T for each z ∈ Z and i = 2, . . . , kz. Let S1 = S \ Y and S2 = S \ X.

Figure 2a and 2b show an instance of the 3-dimensional matching problem and the
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z1 z2 z3

y1 y2 y3

x1 x2 x3

(a) An instance of the
3-dimensional matching
problem.

x1 x2 x3 e2 e3 e6 y1 y2 y3

e1 e2 e3 e4 e5 e6

S1
S2

(b) The corresponding instance of the problem stated in
Claim 2.1, where S1 = {x1, x2, x3, e2, e3, e6} and S2 =
{e2, e3, e6, y1, y2, y3}.

Figure 2: Illustration of the proof of Claim 2.1. Each hyperedge is represented by a
unique line style. The highlighted hyperedges on (a) and the highlighted edges on (b)
correspond to the same feasible solution.

corresponding construction, respectively. Each hyperedge is represented by a unique
line style, e.g. the dotted lines represent hyperedge e1 = (x2, y1, z1) in Figure 2a, and
the dotted lines correspond to the same hyperedge e1 in Figure 2b. Note that the
edges represented by a straight line in Figure 2b do not represent hyperedges, but the
edges between hyperedges. The highlighted edges in Figure 2a and 2b correspond to
the same feasible 3-dimensional matching.

Observe that there exists a 3-dimensional matching F of size |Z| if and only if there
exists M ⊆ E for which |M | = |S| and both M ∩ E1 and M ∩ E2 are matchings,
where Ei denotes the edges incident to Si (i = 1, 2). Indeed, such an M ⊆ E matches
all nodes of S into T , therefore there exists a unique hyperedge e∗z ∈ T ∩Hz for each
z ∈ Z that is not matched to S ∩H, but to exactly one element of x ∈ X and exactly
one element of y ∈ Y (because all hyperedges in S ∩Hz are matched into T ∩Hz, and
these edges of M cover all but one hyperedge of T ∩Hz). These three edges correspond
to the inclusion of hyperedge (x, y, z). This way one obtains a 3-dimensional matching
F of size |Z|. On the other hand, if a 3-dimensional matching F is given for which
|F | = |Z|, then one might easily construct the desired M ⊆ E as follows. For each
(x, y, z) ∈ F , let i be the unique index such that ezi = (x, y, z) ∈ F and extend M
with edges xezi , ye

z
i ∈ E. Let us also include a perfect matching between S ∩Hz and

(T ∩Hz)\{ezi } (such a perfect matching exists, because the induced subgraph consists
of at most two disjoint paths of odd length). It is easy to see that |M | = |S| and both
M ∩ E1 and M ∩ E2 are matchings, and hence M is feasible.

To complete the proof, observe that the maximum degree in G is at most four if
one starts with an instance of the 3-dimensional matching for which no element of
X ∪ Y ∪ Z occurs in more than three triples. Hence, the problem indeed remains
NP-complete even if the maximum degree is 4.

In what follows, the previous problem is reduced to the d-distance matching prob-
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x1 x2 x3 e2 e3 e6 y1 y2 y3

e1 e2 e3 e4 e5 e6

S ′1
S ′2

Figure 3: Illustration of the construction in the proof of Theorem 2.2 for the problem
instance presented in Figure 2b. There exists a perfect 9-distance matching if and
only if the problem given in Figure 2b has a feasible solution of size 9.

lem, hence the hardness of the latter.

Theorem 2.2. It is NP-complete to decide if a graph has a perfect d-distance match-
ing, even if the maximum degree of the graph is at most 4.

Proof. It suffices to reduce the problem from Lemma 2.1 to the perfect d-distance
matching problem. Let G = (S, T ;E); S1, S2 ⊆ S, S1 ∪ S2 = S be an instance of
the above problem. Without loss of generality, one might assume that S1 6⊆ S2 and
S2 6⊆ S1. To construct an instance G′ = (S ′, T ′;E ′), d ∈ N of the perfect d-distance
matching problem, let G′ = G and modify G′ as follows. Order the nodes of S ′ such
that the nodes of S1 \ S2, S1 ∩ S2 and S2 \ S1 appear in this order (the order of the
elements inside the three sets is arbitrary). Insert |S1 \ S2| and |S2 \ S1| new nodes
to S ′ right after the last node of S1 and right before the first node covered by S2,
respectively. Finally, add |S1 \ S2| + |S2 \ S1| new nodes to T ′, extend E ′ with the
edges of a perfect matching between the newly added nodes and let d = |S|. Figure 3
illustrates the construction. The blank nodes on the figure are the newly inserted ones,
and S ′i is the union of Si and the ith set of new nodes added to S ′. The highlighted
edges correspond to those in Figure 2b.

To complete the proof, observe that there exists a perfect |S|-distance matching
in G′ if and only if there exists M ⊆ E for which |M | = |S| and both M ∩ E1 and
M ∩ E2 are matchings. Indeed, from M one obtains a perfect |S|-distance matching
in G′ by simply adding the perfect matching between the new nodes. To see the
other direction, one has to remove this perfect matching from the perfect S-distance
matching. Note that the maximum degree in G′ is not larger than in G, hence the
problem remains hard even if the maximum degree is at most 4.

3 Weighted d-distance matching problem

This section presents various approaches to the weighted d-distance matching problem.
Section 3.1 presents an FPT algorithm [4] parameterized by d, while Section 3.2 settles
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3.1 FPT algorithm parameterized by d 7

the case when the size of T is constant. A simple greedy approach is presented in
Section 3.3. Finally, Sections 3.4.1 and 3.4.2 are devoted to the investigation of the
natural linear programming model.

3.1 FPT algorithm parameterized by d

In what follows, an FPT algorithm parameterized by d is presented for the weighted
(perfect) d-distance matching problem. Observe that the weighted d-distance match-
ing problem easily reduces to the perfect case by adding a new node ts to T and a new
edge sts of weight zero for each s ∈ S, therefore the algorithm is given only for the
weighted perfect d-distance matching problem. The next claim gives a way to reduce
the problem so that it admits an efficient dynamic programming solution.

Claim 3.1. Suppose that s ∈ S is such that deg(s) ≥ 2d. Then, we can remove an
arbitrary minimum-weight edge of ∆(s) from the edge set without changing the weight
of the optimal perfect d-distance matching.

Proof. Let st be a minimum-weight edge incident to node s. In order to prove that
st can be removed, it suffices to show that there is a maximum-weight d-distance
matching that does not use edge st. Given a d-distance matching M that contains
edge st, let Z ⊆ T denote the nodes thatM assigns to Ld(s)∪Rd(s). Since |Z| ≤ 2d−1,
there exists a node t′ ∈ N(s) \ Z for which wst ≤ wst′ . Observe that M ′ = (M ∪
{st′}) \ {st} is a perfect d-distance matching of weight at least w(M), which does not
contain edge st. Indeed, the degree of s remains one, and the only edge M ′ contains
between nodes Ld(s)∪Rd(s) and t′ is st′ itself (by contradiction, if there were another
edge s′t′ ∈M ′ \ {st′} for some s′ ∈ Ld(s)∪Rd(s), then s′t′ would be in M , and hence
t′ ∈ Z would hold).

Based on this claim, the problem can be reduced so that the degree of each node
s ∈ S is at most 2d − 1. The reduction can be performed in O(m + n) steps by
removing all but the 2d− 1 heaviest edges incident to each node s ∈ S. To this end,
let us assume that each edge weight occurs only once (otherwise fix an arbitrary order
between the ties), and for each s ∈ S, find the (2d− 1)th lightest edge es in ∆(s) with
the linear time selection algorithm, and then eliminate all edges of ∆(s) which are
lighter than es.

In what follows, a dynamic programming approach is presented to solve the reduced
problem in O((2d− 1)d+1n) steps.

For i ≥ d, let f(si, z1, . . . , zd) denote the weight of the maximum-weight perfect
d-distance matching if the problem is restricted to the first i nodes of S and si−j+1 is
assigned to its neighbor zj for j = 1, . . . , d. Formally, let

f(si, z1, . . . , zd) = −∞

if z1, . . . , zd are not distinct, otherwise, f(si, z1, . . . , zd) can be defined by the following

EGRES Technical Report No. 2021-02



3.2 Efficient algorithm for constant |T | 8

recursive formula.

f(si, z1, . . . , zd) =


d∑
j=1

wsd−j+1zj if i = d

wsiz1 + max
t∈N(si−d)

f(si−1, z2, . . . , zd, t) if i > d,
(1)

where i ≥ d, si ∈ S, zj ∈ N(si−j+1) for j = 1, . . . , d and z1, . . . , zd are distinct. To see
that recursion (1) holds, observe that in its first case, by definition, f(sd, z1, . . . , zd) is
the weight of matching {sjzd−j+1 : j = 1, . . . , d}. In the second case of (1), si must be
mapped to z1, and we want to find the maximum-weight perfect d-distance matching
on the first i − 1 nodes of S which maps si−j+1 to its neighbor zj for j = 2, . . . , d.
To this end, we want to find a node t ∈ N(si−d) (to be assigned to node si−d) which
maximizes f(si−1, z2, . . . , zd, t).

By definition, the weight of the optimal d-distance matching is

max{f(sn, z1, . . . , zd) : zj ∈ N(sn−j+1) for j = 1, . . . , d}. (2)

Observe that the number of subproblems is O(n(2d− 1)d), since the degree of each
s ∈ S is at most 2d − 1. Recursion (1) gives a way to compute f(si, z1, . . . , zd)
in O(d) steps if the subproblems are computed in appropriate order, i.e. the value
f(si−1, z

′
1, . . . , z

′
d) is available for all necessary z′1, . . . , z

′
d ∈ T . Therefore the number

of steps to compute all the subproblems is O(dn(2d−1)d). Furthermore, the optimum
value can be computed in O((2d− 1)d) steps by (2). The overall running time of the
algorithm is O(dn(2d− 1)d + poly(|S|+ |T |)).

Remark 3.2. To improve the running time to O(ndd+1 + poly(|S| + |T |)), observe
that when

max
t∈N(si−d)

f(si−1, z2, . . . , zd, t)

is computed in (1), we need to consider only the (at most) d heaviest edges of ∆(si−d)
which are not incident to any of z2, . . . , zd ∈ T , since we only need to make sure that
there is no conflict with the d − 1 nodes on the left of si−d. This way the number
of subproblems is O(ndd), and the overall number of steps is O(ndd+1 + poly(|S| +
|T |)). Similarly, in (2) one needs to consider only the d heaviest edges incident to zj
which are not incident to any of zj+1, . . . , zd, therefore there are at most dd different
configurations to be taken into account in (2).

3.2 Efficient algorithm for constant |T |
If the size of T is constant, then one can solve the problem efficiently as well. First,
consider the following subproblems. Let f(si, d1, . . . , d|T |) denote the weight of the
optimal perfect d-distance matching when the problem is restricted to s1, . . . , si, and
tj cannot be matched to nodes si−dj+1, . . . , si for j = 1, . . . , |T | (here dj = 0 means
that tj can be matched to any node). Formally, f(si, d1, . . . , d|T |) can be defined as
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3.3 A greedy algorithm 9

follows. If i ≥ 2, then let

f(si, d1, . . . , d|T |)

= max
tj∈N(si):dj=0

{wsitj + f(si−1, d
′
1, . . . , d

′
j−1, d− 1, d′j+1, . . . , d

′
|T |)}, (3)

where d′k = max(dk − 1, 0) for k = 1, . . . , |T |. If i = 1, then let

f(s1, d1, . . . , d|T |) = max
tj∈N(s1):dj=0

ws1tj . (4)

By definition, the weight of the optimal d-distance matching is given by

max
ti∈N(sn)

f(sn−1, 0, . . . , 0, d− 1︸ ︷︷ ︸
ith

, 0, . . . , 0). (5)

The number of subproblems to be solved is O(nd|T |), each of which can be computed
in O(|T |) steps by (3) and (4). Once all the subproblems are computed, it takes
additionalO(|T |) steps to compute the optimal value by (5). Hence the overall number
of steps is O(n|T |d|T |).

A similar approach settles the non-perfect case for constant |T |, the details of which
are left to the reader.

3.3 A greedy algorithm

This section describes a greedy method for the weighted (not-necessarily-perfect) d-
distance matching problem, and proves that it is a 3-approximation algorithm.

Algorithm 1 Greedy

Let e1, . . . , em be the edges in non-increasing order by their weights.
M := ∅
for i = 1, . . . ,m do

if M ∪ {ei} is a feasible d-distance matching then
M := M ∪ {ei}

end if
end for
output M

Theorem 3.3. Greedy is a 3-approximation algorithm for the weighted d-distance
matching problem.

Proof. Assume that Greedy returns edges f1, . . . , fp, and it selects them in this order.
Let Mi denote a maximum-weight d-distance matching that contains f1, . . . , fi, where
0 ≤ i ≤ p, i.e.

Mi = arg max{w(M) : f1, . . . , fi ∈M and M is a d-distance matching}.
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3.4 Linear programming 10

Furthermore, let θi denote the weight of Mi for i = 0, . . . , p. Note that θ0 is the weight
of the optimal d-distance matching and θp is the weight of the matching Greedy
returns. Observe that there exist edges e, e′, e′′ ∈ Mi \ {f1, . . . , fi} such that (Mi \
{e, e′, e′′})∪{fi+1} is a feasible d-distance matching, which contains edges f1, . . . , fi+1.
By the greedy selection rule, we, we′ , we′′ ≤ wfi+1

, one gets

θi+1 ≥ θi + wfi+1
− we − we′ − we′′ ≥ θi − 2wfi+1

(6)

holds for all i = 0, . . . , p − 1. A simple inductive argument shows that (6) implies

θp ≥ θ0 − 2
p∑
i=1

wfi , therefore 3θp ≥ θ0 follows, which completes the proof.

The analysis is tight even for d = 2 and w ≡ 1 in the sense that Greedy might
return only one edge, while the largest 2-distance matching consists of 3 edges, see
Figure 4a for an example.

s1 s2 s3

t1 t2

(a) For d = 2 and unit weights, Greedy
might select edge s2t2 only, while the largest
2-distance matching is of cardinality 3.

s1 s2

t1 t2

(b) For d = 2 and unit weights, both S-
Greedy and T -Greedy select edge s1t1
only, while the largest 2-distance matching
is of cardinality 2.

Figure 4: Tight examples for Theorems 3.3, 4.1 and 4.2.

Remark 3.4. The above proof shows that Greedy is a 3-approximation algorithm
for the more general cyclic d-distance matching problem, in which the nodes of S are
considered in cyclic order.

3.4 Linear programming

The following two sections prove that the integrality gap of the natural integer pro-
gramming model is at most 2 − 1

2d−1
, and present an LP-based (2− 1

2d−1
)-approxi-

mation algorithm for the weighted d-distance matching problem. First consider the
relaxation of the natural 0 − 1 integer programming formulation of the weighted d-
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3.4 Linear programming 11

distance matching problem.

max
∑
st∈E

wstxst (LP1)

s.t.

x ∈ RE+ (7a)∑
st∈∆(s)

xst ≤ 1 ∀s ∈ S (7b)

∑
s′t∈E:s′∈Rd(s)

xs′t ≤ 1 ∀s ∈ S, t ∈ T (7c)

One gets the relaxation of the 0− 1 integer programming formulation (LP2)
of the weighted perfect d-distance matching problem by tightening (7b) to equality
in LP1.

3.4.1 Integrality gap

This section proves that the integrality gap of LP1 is at most 2− 1
2d−1

, and proves the
integrality of LP1 and LP2 in special cases. The former result also follows from the
LP-based approximation algorithm described in Section 3.4.2. The following definition
plays a central role both in the analysis of the integrality gap and in the LP-based
approximation algorithm presented in the next section.

Definition 3.5. Given a feasible solution x of LP1, an order of the edges e1 =
s1t1, . . . , em = smtm is θ-flat with respect to x if

ξi + ξ̄i ≤ θ − xei (8)

holds for each i = 1, . . . ,m, where ξi =
∑
{xej : j > i, ej ∈ ∆(si)} and ξ̄i =

∑
{xej :

j > i, ej ∈ ∆(ti), sj ∈ Ld(si) ∪Rd(s
i)}.

That is, an order of the edges is θ-flat if the sum of x on those edges among
ei+1, . . . , em that are hit by an edge ei is at most θ − xei for every i. Note that any
order of the edges is 3-flat by definition, since for any edge e = st, the sum of variables
on all edges incident to s is at most 1 by (7b), whereas the sum on the edges induced
by Ld(s)∪Rd(s) and {t} is at most 2 by (7c). The following lemma further improves
this bound to 2− 1

2d−1
.

Lemma 3.6. There exists an optimal solution x ∈ QE of LP1 and an order e1 =
s1t1, . . . , em = smtm of the edges that is (2− 1

2d−1
)-flat with respect to x.

Proof. Let Es ⊆ ∆(s) denote the first min(2d−1, deg(s)) largest weight edges incident
to node s for each s ∈ S. Let x be an optimal solution to LP1 for which γ(x) =

∑
{xe :

e ∈ E \
⋃
s∈S Es} is minimal. Towards a contradiction, suppose that γ(x) > 0. By

definition, γ(x) > 0 implies that there exists an edge st ∈ E \
⋃n
k=1 Ek for which
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xst > 0. There exists an edge st′ ∈ Es such that x′ = x − εχst + εχst′ is feasible for
sufficiently small ε > 0, otherwise x(

⋃
{∆(s′) : s′ ∈ Ld(s) ∪ Rd(s)}) ≥ 2d − 1 + ε

would hold, which is not possible because of the constraints (7b). But then wx ≤ wx′

and γ(x′) < γ(x), contradicting the minimality of γ(x). Therefore γ(x) = 0 follows,
meaning that xe = 0 holds for each e ∈ E \

⋃
s∈S Es. Hence one can restrict the edge

set to
⋃
s∈S Es without change in the optimal objective value, which implies that there

exists a rational optimal solution x ∈ QE of LP1 with γ(x) = 0.
Let x be as above, and let e1 = s1t1, . . . , em = smtm be the order of the edges given

by Algorithm 2 for input x.

Algorithm 2 The ordering procedure for Lemma 3.6

Let x be a given fractional solution to LP1 and let G = (S, T ;E) be a copy of the
graph.
j := 1
for i = 1, . . . , n do

while deg(si) 6= 0 do
Choose an edge sit ∈ ∆(si) for which xsit is as large as possible.
ej := sit
j := j + 1
E := E \ {sit}

end while
end for
output e1, . . . , em

To prove that this order is (2− 1
2d−1

)-flat with respect to x, let ξi and ξ̄i (i = 1, . . . , n)

be as in Definition 3.5. First observe that ξ̄i ≤ 1 − xi holds for each i = 1, . . . , n,
because the algorithm places each edge

⋃i−1
j=1 ∆(sj) before ei. Hence, to obtain (8),

it suffices to prove that ξi ≤ 1 − 1
2d−1

. For any node s ∈ S, if there exists an edge

st ∈ ∆(s) for which xst ≥ 1
2d−1

, then ξi ≤ 1 − 1
2d−1

follows for each ei ∈ ∆(s), since

xe ≥ 1
2d−1

holds for the first edge e ∈ ∆(s) selected by Algorithm 2. Otherwise, there

exists no edge st ∈ ∆(s) for which xst ≥ 1
2d−1

. Therefore ξi ≤ x(∆(s)) < |Es| 1
2d−1

≤ 1
follows for ei ∈ ∆(s), which completes the proof if |Ei| < 2d−1. Hence one can assume
that |Ei| = 2d− 1. Next we argue that x′ = x+ εχst′ is feasible for some st′ ∈ Es and
sufficiently small ε > 0. By contradiction, if there existed no such edge st′, then it is
one of the constraints (7c) that prevents us from increasing xst′ for each st′ ∈ ∆(s).
However, these tight constraints imply that x(

⋃
{∆(s′) : s′ ∈ Ld(s)∪Rd(s)}) = 2d−1,

but this can not be the case, because x(∆(s)) < 1. Hence x′ is a feasible solution for
some st′ ∈ ∆(s) and sufficiently small ε > 0 — contradicting the optimality of x.

Therefore ξi ≤ 1− 1
2d−1

follows for i = 1, . . . , n, which means that the order of the

edges is (2− 1
2d−1

)-flat.

Theorem 3.7. The integrality gap of LP1 is at most 2− 1
2d−1

.

Proof. Let θ = 2 − 1
2d−1

. By Lemma 3.6, there exists a solution x ∈ QE to LP1 and
an order of the edges e1 = s1t1, . . . , em = smtm that is θ-flat with respect to x. First,
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s1 s2 s3 s4 s5 s6 s7 s8

t1 t2 t3 t4

Figure 5: For w ≡ 1 and d = 5, x ≡ 1/2 is an optimal solution to LP1, and the high-
lighted edges form an optimal 5-distance matching, hence the integrality gap is 6/5.

it will be shown that there exist d-distance matchings M1, . . . ,Mq and coefficients
λ1, . . . , λq ∈ Q+ such that

∑q
i=1 λiχMi

= x and λ :=
∑q

i=1 λi ≤ θ.
Let K ∈ N be the lowest common denominator of {xe : e ∈ E}, and let q = bKθc.

The main observation is that each edge e ∈ E can be assigned a set of colors Ce ⊆
{1, . . . , q} such that each color class corresponds to a feasible d-distance matching
and |Ce| = Kxe. To prove this, the edges are greedily colored one by one in order
em, . . . , e1. By induction, assume that edges em, . . . , ei+1 already have their color sets.
It suffices to assign a color set Cei to edge ei which is of size Kxei and distinct from
both A :=

⋃
{Cej : j > i, ej ∈ ∆(si)} and B :=

⋃
{Cej : j > i, ej ∈ ∆(ti), sj ∈ Rd(s

i)∪
Ld(s

i)}. Without loss of generality, assume that xei > 0 (otherwise Cei = ∅). By (8),
one gets |A∪B| ≤ |A|+ |B| = K(ξi + ξ̄i) ≤ bK(θ− xei)c = bKθc−Kxei = q−Kxei ,
thus |A ∪ B| + Kxei ≤ q. That is, the number of free colors is at least Kxei , so let
Cei be any Kxei colors in {1, . . . , q} \ (A ∪B).

Let the desired d-distance matching Mi consist of the edges with color i for i =
1, . . . , q. Set λi = 1

K
for all i = 1, . . . , q, and observe that both

∑q
i=1 λiχMi

= x and∑q
i=1 λi =

∑q
i=1

1
K

= q
K
≤ θ hold.

Now, we are ready to argue that there exists a λ-approximate solution among
M1, . . . ,Mq. By contradiction, suppose that λw(Mi) < w(M∗) for each i = 1, . . . , q,
whereM∗ is an optimal distance matching. Observe that w

∑q
i=1 λiχMi

=
∑q

i=1 λiw(Mi) <
1
λ
w(M∗)

∑q
i=1 λi = w(M∗), that is, the LP optimum is strictly smaller than the IP

optimum, which is a contradiction. Therefore, the largest weight d-distance match-
ings among M1, . . . ,Mq are indeed λ-approximate. Since λ =

∑q
i=1 λi ≤ 2− 1

2d−1
, the

proof is complete.

Note that the above approach is algorithmic, but it does not necessarily run in
polynomial time — since q may be exponential in the size of the graph. The next
section presents a polynomial-time method and re-proves that the integrality gap is
at most 2− 1

2d−1
.

Remark 3.8. Figure 5 provides an example with (the largest known) integrality gap
6/5. Using this instance, one might easily derive an example (by adding two new
nodes t5 and t6 to T , and two new edges s3t5, s6t6) for which no perfect 5-distance
matching exists, but there is a fractional perfect 5-distance matching — meaning that
the integrality gap of LP2 is unbounded as it was expected due to the complexity of the
problem.

In what follows, the integrality of LP1 and LP2 are shown in special cases.
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3.4 Linear programming 14

Theorem 3.9. If d = 1 or d = 2, then both LP1 and LP2 are integral.

Proof. For d = 1, the matrix of LP1 and LP2 is the incidence matrix of a bipartite
graph, which is a well-known network matrix [5, Page 149]. For d = 2, one can easily
construct a directed graph and a spanning tree (in this case a directed caterpillar)
for which the corresponding network matrix is the matrix of LP1 and LP2. As the
right-hand side of both programs are integral and their matrices are network matrices
(and hence totally unimodular) for d = 1, 2, the proof is complete. Note that the
statement for d = 1 also follows from Theorem 3.7.

Note that the matrix of LP1 and LP2 is not totally unimodular for d ≥ 3 if the
input graph is the complete bipartite graph — the technical proof is omitted here.
Therefore, the proof of Theorem 3.9 can not work for d ≥ 3 and one can not expect
that LP1 and LP2 remain integral. Having said that, LP2 still describes the convex
hull of the integral solutions for d = |T |, but not because of total unimodularity:

Theorem 3.10. If d = |T |, then LP2 is integral.

Proof. Let A denote the matrix of LP2, and let x̃ be an optimal integral solution.
If x̃ is not an optimal LP solution, then there is no complementary dual solution y,
therefore — by Farkas’ lemma — there exists z ∈ RE for which

wz > 0 (9a)

Az = 0 (9b)

x̃e = 1 =⇒ ze ≤ 0 ∀e ∈ E (9c)

x̃e = 0 =⇒ ze ≥ 0 ∀e ∈ E. (9d)

Let zj = (zs1tj , zs2tj , . . . , zs|S|tj). Observe that zji = zjk for all j = 1, . . . , d whenever
i ≡ k mod d, which allows the simplification of (9a)-(9d). For all i = 1, . . . , d and
j = 1, . . . , |T |, let ẑji be a new variable representing all variables {zji′ : i ≡ i′ mod d},
and consider the following formulation.

max ŵẑ

d∑
i=1

ẑji = 0 ∀j = 1, . . . , |T | (10a)

|T |∑
j=1

ẑji = 0 ∀i = 1, . . . , d (10b)

ẑji ≤ 0 ∀sitj ∈ E : i ∈ {1, . . . , d} and x̃sitj = 1 (10c)

ẑji ≥ 0 ∀sitj ∈ E : i ∈ {1, . . . , d} and x̃sitj = 0 (10d)

−1 ≤ z ≤ 1 (10e)

where ŵji =
∑
{wji′ : i′ ∈ {1, . . . , |S|} and i′ ≡ i mod d}. Note that system (9a)-(9d)

has a feasible solution if and only if (10a)-(10e) has one with positive objective value.
As the optimal value of (10a)-(10e) is finite and its matrix is totally unimodular (the
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incidence matrix of a bipartite graph and identity matrices under it), there is an
integral solution ẑ∗ to (10a)-(10e) with a positive objective value. This particular
solution corresponds to an integral solution z∗ to (9a)-(9d) with the same positive
weight. But this means that x̃ + z∗ is an integral solution of LP2, for which wx̃ <
w(x̃+ z∗) holds, contradicting the fact that x̃ was an optimal integral solution.

Note that the analogous statement for LP1 does not hold.

3.4.2 (2− 1
2d−1

)-approximation algorithm for the weighted d-distance match-
ing

This section presents an “almost greedy” LP-based (2− 1
2d−1

)-approximation algorithm

and re-proves that the integrality gap is at most θ := 2− 1
2d−1

.

Algorithm 3 θ-approximation algorithm for the weighted distance matching prob-
lem

Let e1, . . . , em be a θ-flat order with respect to a solution x of LP1 (see Lemma 3.6).
procedure WdmLpApx(E,w)
E := E \ {e ∈ E : we ≤ 0}
if E = ∅ then

return ∅
end if
Let st be the first edge according to the above order that appears in E.
M ′ := WdmLpApx(E \ {st}, w′), where w′ := w − wstχ∆(s)∪{s′t∈∆(t):s′∈Rd(s)}
if M ′ ∪ {st} is a feasible d-distance matching then

return M ′ ∪ {st}
else

return M ′

end if

Theorem 3.11. Algorithm 3 is a θ-approximation algorithm for the weighted d-
distance matching problem if a θ-flat order of the edges is given in the first step of the
algorithm.

Proof. The proof is by induction on the number of edges. Let M denote the distance
matching found by WdmLpApx(E,w), and let x be as defined in Algorithm 3. In
the base case, if E = ∅, then θw(M) ≥ wx holds. Let st ∈ E be the first edge with
respect to the order of the edges used by Algorithm 3. By induction, θw′(M ′) ≥ w′x
holds for M ′ = WdmLpApx(E \ {st}, w′), where w′ = w−wst χ∆(s)∪{s′t∈∆(t):s′∈Rd(s)}.
The key observation is that

θ(w − w′)(M) ≥ θwst ≥ (w − w′)x (11)

follows from the definition of w′ and the order of the edges. Hence, one gets

θw(M) = θ(w − w′)(M) + θw′(M) ≥ (w − w′)x+ w′x = wx, (12)
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where w′(M) = w′(M ′) because w′st = 0. Therefore, M is indeed a θ-approximate
solution, which completes the proof.

Theorem 3.11 also implies that the integrality gap of LP1 is at most θ. Note that if
we have a θ′-flat order of the edges in the first step of Algorithm 3, then it outputs a θ′-
approximate solution. We believe that there always exists a θ′-flat order of the edges
for some θ′ < θ, i.e. it is possible to improve Lemma 3.6, which would automatically
improve both the integrality gap and the approximation guarantee of the algorithm
to θ′.

3.5 A combinatorial (2− 1
d)-approximation algorithm

This section presents a (2 − 1
d
)-approximation algorithm for the weighted distance

matching problem. Let k ∈ {d − 1, . . . , 3d − 3} be such that 2d − 1 divides |S| + k,
and add k new dummy nodes sn+1, . . . , sn+k to the end of S in this order. Let us
consider the extended node set in cyclic order. Observe that the new cyclic problem is
equivalent to the original one. Let Hj denote the subgraph of G induced by Rd(sj)∪T ,
where Rd(sj) is the set consisting of node sj and the next d− 1 nodes on its right in
the new cyclic problem. For each such subgraph Hj, let Fj denote a maximum-weight
matching of it with respect to w. Let

Gi = (Si, T ;Ei) =

n+k
2d−1

−1⋃
j=0

Hi+j(2d−1)

and

Mi =

n+k
2d−1

−1⋃
j=0

Fi+j(2d−1)

for i = 1, . . . , 2d− 1, where Si ⊆ S. Let i∗ = arg max{w(Mi) : i = 1, . . . , 2d− 1}. For
example, consider the graph in Figure 6 with d = 3. The nodes of G4 are highlighted
on the figure and the edges of M4 are the wavy ones. Nodes s6, . . . , s10 are the five
dummy nodes.

Since Mi∗ can be computed in strongly polynomial time, we obtain a strongly-
polynomial-time (2− 1

d
)-approximation algorithm by the following theorem.

Theorem 3.12. Mi∗ is a (2− 1
d
)-approximate d-distance matching.

Proof. Each node of S is covered by at most one edge of Mi, as Mi is the union of
matchings no two of which cover the same node of S. If sit, sjt ∈Mi, then sit and sjt
belong to two distinct matchings Fk, Fl ⊆ Mi for some k, l, hence |j − i| ≥ d. From
this, the feasibility of Mi follows for all i = 1, . . . , 2d− 1, and Mi∗ being one of them,
it is feasible as well.

To show the approximation guarantee, let M∗ be an optimal d-distance matching.
For each node s ∈ S, let µs ∈ R+ denote the weight of the edge covering s in M∗ and
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

t1 t2 t3

Figure 6: Tight example for Theorem 3.12 in the case d = 3. The wavy edges form a
possible output of the algorithm. (Recall that the nodes of S are in cyclic order.)

zero if M∗ does not cover s. Note that
∑

s∈S µs = w(M∗) by definition, and∑
s∈Si

µs ≤ w(Mi) (13)

follows because
∑

s∈Si
µs is the weight of a d-distance matching which covers no nodes

outside Gi. Observe that

dw(M∗) = d
∑
s∈S

µs =
2d−1∑
i=1

∑
s∈Si

µs ≤
2d−1∑
i=1

w(Mi) ≤ (2d− 1)w(Mi∗) (14)

holds, where the second equation holds because µs occurs d times as a summand in∑2d−1
i=1

∑
s∈Si

µs for all s ∈ S, the first inequality follows from (13), while the last one
holds because Mi∗ is a largest-weight d-distance matching among M1, . . . ,M2d−1. By
(14), one gets w(M∗) ≤ (2− 1

d
)w(Mi∗), which completes the proof of the theorem.

The analysis is tight in the sense that, for every d ∈ Z+, there exists a graph
G for which the algorithm returns a d-distance matching M for which w(M∗) =
(2 − 1

d
)w(M), where M∗ is an optimal d-distance matching. Let S and T consist of

2d − 1 and d nodes, respectively. Add edge siti for i = 1, . . . , d, and edge si+dti for
i = 1, . . . , d − 1. Note that the edge set is a feasible d-distance matching itself, and
the above algorithm returns a matching that covers exactly d nodes of S. Hence the
approximation ratio of the found solution is 2d−1

d
. Figure 6 shows the construction for

d = 3, where s6, . . . , s10 are the dummy nodes.

4 Unweighted d-distance matching

First, two refined greedy approaches are considered for the unweighted case, then the
analysis of the approximation ratio of locally optimal solutions follows.

4.1 Greedy algorithms

This section describes two refined greedy algorithms for the unweighted d-distance
matching problem, and proves that both of them achieve an approximation guarantee
of 2.

Theorem 4.1. S-Greedy is a 2-approximation algorithm for the unweighted d-
distance matching problem.
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Algorithm 4 S-Greedy

Let s1, . . . , sn be the nodes of S in the given order
M := ∅
for i = 1, . . . , n do

if M ∪ {sit} is feasible for some sit ∈ ∆(si) then
j := arg min{j : sitj ∈ ∆(si) and M ∪ {sitj} is feasible }
M := M ∪ {sitj}

end if
end for
output M

Proof. Assume that S-Greedy returns edges f1, . . . , fp, and it selects them in this
order. Let Mi and θi be as above in the proof of Theorem 3.3, i.e. let Mi =
arg max{w(M) : f1, . . . , fi ∈ M and M is a d-distance matching} and let θi denote
the weight of Mi for i = 0, . . . , p. Observe that, as opposed to the proof of Theo-
rem 3.3, there exist two edges e, e′ ∈Mi \ {f1, . . . , fi} such that (Mi \ {e, e′})∪{fi+1}
is a feasible d-distance matching containing edges f1, . . . , fi+1. Indeed, if there were
three edges to leave out, then one of them would be incident to {si−d+1, . . . , si−1}, but
then Algorithm 4 would have picked this edge instead of fi+1. By the greedy selection
rule, one gets

θi+1 ≥ θi + 1− 1− 1 = θi − 1 (15)

holds for all i = 0, . . . , p − 1. A straightforward inductive argument shows that (15)
implies θp ≥ θ0 − p, therefore 2θp ≥ θ0 follows, which completes the proof.

The analysis is tight in the sense that S-Greedy might return only one edge, while
the largest 2-distance matching consists of 2 edges, see Figure 4b.

Theorem 4.2. T -Greedy is a 2-approximation algorithm for the unweighted d-
distance matching problem.

Proof. LetMS andMT denote the edge sets T -Greedy (Algorithm 5) and S-Greedy
(Algorithm 4) outputs, respectively. It suffices to prove that MS = MT . By contra-
diction, suppose that MS 6= MT . Let si be the first node in S for which ∆(si)∩MS 6=
∆(si)∩MT , and choose the edge sitj ∈ ∆(si)∩ (MS∆MT ) such that j is the smallest
possible.

Case 1: sitj ∈MS \MT . First, observe that MT covers node si, otherwise it would
have included sist. Therefore, T -Greedy assigns node si to tj′ , where j′ 6= j. If
j′ < j, then S-Greedy would have chosen edge sitj′ instead of sitj. If j′ > j, then
T -Greedy would have included sitj instead of sitj′ to MT .

Case 2: sitj ∈ MT \MS. Observe that MS covers node si, otherwise S-Greedy
could have included edge sist. Therefore, S-Greedy assigns node si to tj′ , where
j′ 6= j. Similarly to the argument in Case 1, it is easy to see that neither j′ < j nor
j′ > j is possible.

Figure 4b shows that the approximation ratio is tight.
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Algorithm 5 T -Greedy

Let s1, . . . , sn be the nodes of S in the given order
M := ∅
C := ∅
for j = 1, . . . , k do

Mj := ∅
Cj := ∅
i := 1
while i ≤ n do

if sitj ∈ E and si /∈ C then
Mj := Mj ∪ {sitj}
Cj := Cj ∪ {si}
i := i+ d

else
i := i+ 1

end if
end while
M := M ∪Mj

C := C ∪ Cj
end for
output M

4.2 Local search

This section investigates the approximation ratio of the so-called locally optimal solu-
tions. First, consider the following notion, which plays a central role throughout the
section.

Definition 4.3. Given an edge e∗ ∈ E, let H(e∗,M) ⊆ M denote the inclusion-wise
minimal subset of M for which M \H(e∗,M)∪{e∗} is a feasible d-distance matching.

We say that an edge e∗ hits the edges of H(e∗,M), or that H(e∗,M) is the hit set
of edge e∗ with respect to M . Similar notation and terminology are used for a subset
of the edges as follows.

Definition 4.4. Given an edge set X ⊆ E, let H(X,M) ⊆M denote the set of edges
hit by at least one edge in X, i.e. let H(X,M) =

⋃
e∗∈X H(e∗,M).

Definition 4.5. A d-distance matching M is l-locally optimal if there exists no
d-distance matching X ⊆ E \M such that l ≥ |X| > |H(X,M)|. Similarly, M is
l-locally optimal with respect to M∗ if there exists no X ⊆ M∗ \M such that
l ≥ |X| > |H(X,M)|, where M∗ is an d-distance matching.

For unit weights, the possible outputs of Greedy (Algorithm 1) are exactly the
1-locally optimal solutions.

Claim 4.6. A d-distance matching M is 1-locally optimal if and only if there exists
a permutation of E such that Greedy outputs M for w ≡ 1.
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Proof. If M is the output of Greedy, then there exists no edge e outside M which
can be added to M (otherwise Greedy could have added e when it tried to), hence
M is 1-locally optimal by definition. On the other hand, if M is 1-locally optimal,
then permute E such that the edges of M come first. As w ≡ 1, one can choose this
particular permutation in the first line of Algorithm 1. To complete the proof, observe
that its output is M itself, since it includes all edges of M as M is feasible, and may
not include any other edges, because M is 1-locally optimal.

In what follows, an upper bound %l is shown on the approximation ratio of l-locally
optimal solutions for each l ≥ 1, where %l is defined by the following recursion.

%l =


3, if l = 1

2, if l = 2
4%l−2 − 3

2%l−2 − 1
, if l ≥ 3.

(16)

For l = 1, 2, 3, 4, the statement can be proved by a simple argument, given below.
However, this approach does not seem to work in the general case. The proof of
the general case, which is much more involved and quite esoteric, is given after the
following theorem.

Theorem 4.7. If M,M∗ are d-distance matchings such that M is l-locally optimal
with respect to M∗, then the approximation ratio |M∗|/|M | is at most %l, where l =
1, . . . , 4 and %l is as defined above.

Proof. LetM∗
i = {e∗ ∈M∗ : |H(e∗,M)| = i} for i = 0, . . . , 3. Note thatM∗

0 ,M
∗
1 ,M

∗
2 ,M

∗
3

is a partition of M∗, and M∗
0 = ∅ since each edge of M∗ hits at least one edge of M

if l ≥ 1. Since each edge e ∈M can be hit by at most three edges of M∗, one gets

3|M | ≥
∑
e∗∈M∗

|H+(e∗,M)| = |M∗
1 |+ 2|M∗

2 |+ 3|M∗
3 |. (17)

Case l = 1.
It easily follows from (17) that

|M∗| = |M∗
1 |+ |M∗

2 |+ |M∗
3 | ≤ |M∗

1 |+ 2|M∗
2 |+ 3|M∗

3 | ≤ 3|M |. (18)

Case l = 2. Similarly,

2|M∗| = 2(|M∗
1 |+ |M∗

2 |+ |M∗
3 |) ≤ |M∗

1 |+ |M∗
1 |+ 2|M∗

2 |+ 3|M∗
3 |

≤ |M∗
1 |+ 3|M | ≤ 4|M |, (19)

where the second inequality follows from (17) and the third one holds because M is
2-locally optimal with respect to M∗.
Case l = 3. For l = 3, one has to show that |M∗|/|M | ≤ 9/5. In the following computa-
tion, inequality (17) is forced with an appropriate coefficient so that the rest admits
the application of case l = 1 to a derived problem instance.

5|M∗| = 5(|M∗
1 |+ |M∗

2 |+ |M∗
3 |) = 2(|M∗

1 |+ 2|M∗
2 |+ 3|M∗

3 |)
+ 3|M∗

1 |+ |M∗
2 | − |M∗

3 | ≤ 6|M |+ 3|M∗
1 |+ |M∗

2 | − |M∗
3 | ≤ 9|M |, (20)

where the first inequality holds by (17), while the last one by the following claim.
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Claim 4.8. If M is 3-locally optimal with respect to M∗, then

|M∗
2 | − |M∗

3 | ≤ 3(|M | − |M∗
1 |). (21)

Proof. It suffices to show that there exist d-distance matchings M̃ , M̃∗ such that

1) |M̃ | = |M | − |M∗
1 |,

2) |M̃∗| = |M∗
2 |,

3) M̃ is 1-locally optimal with respect to M̃∗.

Then, condition 3) implies that |M̃∗| ≤ 3|M̃ | holds, from which the inequality to be
proved follows by substituting 1) and 2).

Let M̃ = M \ H(M∗
1 ,M) and M̃∗ = M∗

2 . Clearly, both 1) and 2) hold. By
contradiction, suppose that 3) does not hold, that is, there exists e∗1 ∈ M̃∗ such that
M̃ ∪ {e∗1} is a feasible d-distance matching. By definition, e∗1 ∈ M∗

2 , therefore e∗1 hits
exactly two edges e1, e2 in M . Neither e1, nor e2 are in M̃ , thus e1, e2 ∈ H(M∗

1 ,M),
that is ej is hit by an edge e∗j+1 ∈ M∗

1 for j = 1, 2. Note that e∗1, e
∗
2, e
∗
3 are pairwise

distinct edges, and H({e∗1, e∗2, e∗3},M) = {e1, e2}, contradicting that M is 3-locally
optimal.

Case l = 4. One has to show that |M∗|/|M | ≤ 5/3. As in the previous case, in-
equality (17) will be applied with an appropriate multiplier so that the rest admits the
application of case l = 2 to a derived problem instance.

6|M∗| = 6(|M∗
1 |+ |M∗

2 |+ |M∗
3 |) = 2(|M∗

1 |+ 2|M∗
2 |+ 3|M∗

3 |) + 4|M∗
1 |+ 2|M∗

2 |
≤ 6|M |+ 4|M∗

1 |+ 2|M∗
2 | ≤ 10|M |, (22)

where the first inequality holds by (17), the last one by the following claim.

Claim 4.9. If M is 4-locally optimal with respect to M∗, then

2|M∗
2 | ≤ 4(|M | − |M∗

1 |). (23)

Proof. It suffices to show that there exist d-distance matchings M̃ , M̃∗ such that

1) |M̃ | = |M | − |M∗
1 |,

2) |M̃∗| = |M∗
2 |,

3) M̃ is 2-locally optimal with respect to M̃∗.

Then, condition 3) implies that |M̃∗| ≤ 2|M̃ | holds, from which one obtains the
inequality to be proved by substituting 1) and 2).

Let M̃ = M \H(M∗
1 ,M) and M̃∗ = M∗

2 . As in the proof of the claim in case l = 3,
one might show that 3) holds, hence the desired inequality follows.

This concludes the proof of the theorem.
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It is worth noting that the proof for l = 3, 4 refers inductively to the case l − 2,
which is quite unexpected. The same idea does not seem to work for l = 5. Based on
cases l = 1, 2, 3, 4, one gains the following analogous computation.

13|M∗| = 13(|M∗
1 |+ |M∗

2 |+ |M∗
3 |) = 4(|M∗

1 |+ 2|M∗
2 |+ 3|M∗

3 |) + 9|M∗
1 |

+ 5|M∗
2 |+ |M∗

3 | ≤ 12|M |+ 9|M∗
1 |+ 5|M∗

2 |+ |M∗
3 | ≤ 21|M |, (24)

where the last inequality requires that 5|M∗
2 | + |M∗

3 | ≤ 9(|M | − |M∗
1 |). However, the

latter inequality does not admit a constructive argument similar to the cases l = 3, 4
(see the proof of Theorem 4.7). To overcome this complication, consider the following
extended problem setting, which surprisingly does admit a constructive argument.

Definition 4.10. Let R be a set of (parallel) loops on the nodes of S. A subset
M ⊆ E ∪R is (R,d)-distance matching if it is the union of a d-distance matching
and R.

Consider the following extension of Definition 4.3.

Definition 4.11. Given an (R, d)-distance matching M and an edge sv ∈ (S×T )∪R,
let

H+(sv,M) =

{
H(sv,M \R) ∪ {e ∈ R : e is incident to node s}, if sv ∈ S × T
sv, if sv ∈ R.

In other words, each st ∈ E hits the edges hit by H(st,M) and all the loops
incident to node s, while each loop hits only itself. A natural way to define the hit
set of multiple edges is as follows.

Definition 4.12. Given an edge set X ⊆ E, let H+(X,M) =
⋃
e∈X H+(e,M).

Using H+, the definition of l-locally optimal d-distance matchings can be naturally
extended to (R, d)-distance matchings.

Definition 4.13. An (R, d)-distance matching M is l-locally optimal if there exists
no d-distance matching X ⊆ E \M such that l ≥ |X| > |H+(X,M)|. Similarly, M
is l-locally optimal with respect to M∗ if there exists no X ⊆M∗ \M such that
l ≥ |X| > |H+(X,M)|, where M∗ is an (R, d)-distance matching.

Note that each of these definitions reduces to its original counterpart if R = ∅.
Therefore, it suffices to show that %l is an upper bound on the approximation ratio of
(R, l)-locally optimal solutions.

To elaborate on the intuition behind these technical definitions and to understand
how R influences locally optimality, suppose that we are given a feasible d-distance
matching M , which we want to make l-locally optimal. To this end, one needs to find
a d-distance matching X ⊆ E \M of cardinality at most l that hits strictly fewer
edges of M then its cardinality. In an (R, d)-distance matching, however, the number
of edges hit by such a subset X can be larger because of the loops (as H+(X,M)
also counts those), meaning that the requirements for l-locally optimality are relaxed.
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Intuitively, the loops incident to a node s ∈ S can be thought of as the ”resistances”
of s: the more loops s has, the less we want to replace the edge of M incident to s
with some other edge of ∆(s). Note, however, that the loops also contribute to the
size of the matching, which will be crucial in the proof of the next theorem.

Theorem 4.14. If M,M∗ are (R, d)-distance matchings such that M is l-locally op-
timal with respect to M∗, then the approximation ratio |M∗|/|M | is at most %l, where
l ≥ 1 and %l is as defined above.

Proof. As in the proof of Theorem 4.7, let M∗
i = {e∗ ∈ M∗ : |H+(e∗,M)| = i} for

i ∈ N, and let M∗
i+ =

⋃∞
k=iM

∗
k . Note that M∗

0 ,M
∗
1 , . . . is a partition of M∗, for which

R ⊆M∗
1 by definition, and M∗

0 = ∅ since each edge of M∗ hits at least one edge of M
if l ≥ 1. Similar to (17), observe that each edge e ∈ M can be hit by at most three
edges of M∗, therefore

3|M | ≥
∑
e∗∈M∗

|H+(e∗,M)| =
∞∑
k=1

k|M∗
k |. (25)

The proof is by induction on l. The argument for l = 1, 2 is analogous to that in the
proof of Theorem 4.7.
Case 1: l = 1.

It easily follows from (25) that

|M∗| =
∞∑
k=1

|M∗
k | ≤

∞∑
k=1

k|M∗
k | ≤ 3|M |. (26)

Case 2: l = 2. Similarly,

2|M∗| = 2
∞∑
k=1

|M∗
k | ≤ |M∗

1 |+
∞∑
k=1

k|M∗
k | ≤ |M∗

1 |+ 3|M | ≤ 4|M |, (27)

where the second inequality follows from (25) and the third one holds because M is
2-locally optimal with respect to M∗.
Case 3: l ≥ 3. One has to show that |M∗|/|M | ≤ 4%l−2 − 3/2%l−2 − 1. First, introduce
the notation α(M,M∗) =

∑∞
k=3(k− 2)|M∗

k |. In the following computation, inequality
(25) is forced with an appropriate multiplier so that the rest admits the application
of case l−2 to a derived problem instance (see Lemma 4.15). Note that the approach
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is similar to computations (20) and (22).

(2%l−2 − 1)|M∗| = (2%l−2 − 1)
∞∑
k=1

|M∗
k | = (%l−2 − 1)

∞∑
k=1

k|M∗
k |

+
∞∑
k=1

((k − 1)− (k − 2)%l−2)|M∗
k |

≤ 3(%l−2 − 1)|M |+
∞∑
k=1

((k − 1)− (k − 2)%l−2)|M∗
k |

= 3(%l−2 − 1)|M |+ %l−2|M∗
1 |+ |M∗

2 |+
∞∑
k=3

(k − 1)|M∗
k | − %l−2

∞∑
k=3

(k − 2)|M∗
k |

= 3(%l−2 − 1)|M |+ %l−2|M∗
1 |+ |M∗

2 |+
∞∑
k=3

|M∗
k |+ α(M,M∗)− %l−2α(M,M∗)

= 3(%l−2 − 1)|M |+ %l−2|M∗
1 |+ |M∗

2 |+ |M∗
3+|+ α(M,M∗)− %l−2α(M,M∗)

≤ 3(%l−2 − 1)|M |+ %l−2|M | = (4%l−2 − 3)|M |, (28)

where the first inequality holds by (25) and the last one by the following lemma. Note
that if R = ∅, then α(M,M∗) = |M∗

3 | and |Mk| = 0 for k ≥ 4, hence (28) gives back
(20) and (22) for l = 3, 4, respectively. The following lemma completes the proof
of (28).

Lemma 4.15. If l ≥ 3 and M,M∗, α(M,M∗) are as above, then

|M∗
2+|+ α(M,M∗) ≤ %l−2(|M | − |M∗

1 |+ α(M,M∗)) (29)

Proof. It suffices to show that if M is l-locally optimal with respect to M∗, then there
exist M̃ , M̃∗ and R̃ such that

1) M̃ and M̃∗ are (R̃, d)-distance matchings,

2) |M̃ | = |M | − |M∗
1 |+ α(M,M∗),

3) |M̃∗| = |M∗
2+|+ α(M,M∗),

4) |R̃| = α(M,M∗),

5) M̃ is (l − 2)-locally optimal with respect to M̃∗.

Then, condition 5) implies that |M̃∗| ≤ %l−2|M̃ | holds by induction, from which one
obtains (29) by substituting 2) and 3). We define R̃, M̃ and M̃∗ such that

R̃ =
⋃

s∗t∗∈M∗3+

{|H+(s∗t∗,M)| − 2 parallel loops incident to s∗},

M̃ = M \ H+(M∗
1 ,M) ∪ R̃ and

M̃∗ = M∗
2+ ∪ R̃.
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It is easy to see that M̃, M̃∗ and R̃ fulfill 1)-4). In the rest of the proof, we argue
that 5) holds, as well. By contradiction, suppose that 5) does not hold, that is, there
exists Z ⊆ M̃∗ : l − 2 ≥ |Z| > |H+(Z, M̃)|. Assume that the instance of the problem
at hand is minimal in the sense that |M | + |M∗| + |M̃ | + |M̃∗| + |Z| is minimal.
First, various useful properties of minimal problem instances are derived. Note that
|Z| = |H+(Z,M)|+ 1 can be assumed, otherwise |Z| > |H+(Z,M)|+ 1 and therefore
one could have removed an arbitrary edge from Z.

Observe that if an edge e ∈ H+(Z, M̃) were hit by a sole edge e∗ ∈ Z, then
l − 2 ≥ |Z \ {e∗}| > |H+(Z \ {e∗}, M̃)| would hold, i.e. one could have left out e∗

from Z. Therefore, each edge e ∈ H+(Z, M̃) is hit by at least two edges of Z. This
also implies that s∗t∗ ∈ Z if and only if {e ∈ R : e is incident to s∗} ⊆ Z. Using
this, Z = M̃∗ follows, because removing all edges M̃∗ \Z from M∗ and all those loops
from R that are incident to the removed edges, one obtains a smaller instance (where
α(M,M∗), R̃, M̃ and M̃∗ need to be adjusted appropriately after the edge-removal),
which satisfies 1)-4) but not 5). Clearly, M remains l-locally optimal with respect to
M∗ after the edge-removal. So, one can assume that Z = M̃∗.

A minimal instance also fulfills that there exist no edges e ∈ M and e∗ ∈ M∗
1

such that e is not hit by any edge of M∗
2+, (that is, H+(e∗,M) \ H+(M∗

2+,M) = ∅),
otherwise the removal of e and e∗ results in a smaller instance satisfying 1)-4) but
not 5). Observe that after the removal, M remains l-locally optimal with respect to
M∗, because there exists no X ⊆ M∗ \ {e∗} such that e ∈ H+(X,M) (since e is not
hit by any edge of M∗

2+), therefore if the new instance were not l-locally optimal,
then the original instance would not have been either. So, one can assume that
H+(M∗

1 ,M) \ H+(M∗
2+,M) = ∅.

Now we are ready to derive that |H+(M∗,M)| < |M∗| ≤ l holds — contradicting
that M is l-locally optimal. The first inequality is shown by

|H+(M∗,M)| = |H+(M∗
2+,M)| = |H+(M∗

2+,M) ∩H+(M∗
1 ,M)|

+ |H+(M∗
2+,M) \ H+(M∗

1 ,M)| = |H+(M∗
1 ,M)|+ |H+(M∗

2+,M) \ H+(M∗
1 ,M)|

= |M∗
1 |+ |H+(M∗

2+,M) \ H+(M∗
1 ,M)| = |M∗

1 |+ |H+(M∗
2+,M \ H+(M∗

1 ,M))|
= |M∗

1 |+ |H+(M∗
2+, M̃ \ R̃)| = |M∗

1 |+ |H+(Z, M̃) \ R̃| = |M∗
1 |+ |Z| − 1− |R̃|

= |M∗
1 |+ |M̃∗| − 1− |R̃| = |M∗

1 |+ |M∗
2+|+ |R̃| − 1− |R̃| = |M∗| − 1. (30)
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Next, we show that |M∗| ≤ l.

|M∗| = |M∗
2+|+ |M∗

1 | = |M∗
2+|+ |H+(M∗

1 ,M)|
= |M∗

2+|+ |H+(M∗
2+,M) ∩H+(M∗

1 ,M)|

= |M∗
2+|+ |

⋃
e∗∈M∗2+

H+(e∗,M) ∩H+(M∗
1 ,M)|

≤ |M∗
2+|+

∑
e∗∈M∗2+

|H+(e∗,M) ∩H+(M∗
1 ,M)|

= |M∗
2+|+

∑
e∗∈M∗2+

(|H+(e∗,M)| − |H+(e∗,M) \ H+(M∗
1 ,M)|)

≤ |M∗
2+|+

∑
e∗∈M∗2+

|H+(e∗,M)| − 2|H+(M∗
2+,M) \ H+(M∗

1 ,M)|

= |M∗
2+|+

∑
e∗∈M∗2+

|H+(e∗,M)| − 2(|H+(Z, M̃) \ R̃|)

= |M∗
2+|+

∑
e∗∈M∗2+

|H+(e∗,M)| − 2(|M∗
2+| − 1)

= |M∗
2+|+ 2|M∗

2+|+ |R̃| − 2(|M∗
2+| − 1)

= |M∗
2+|+ |R̃|+ 2 = |M̃∗|+ 2 = |Z|+ 2 ≤ l, (31)

where the second inequality holds by the following computation.

2|H+(M∗
2+,M) \ H+(M∗

1 ,M)| = 2|H+(M∗
2+,M \ H+(M∗

1 ,M))|
= 2|H+(M∗

2+, M̃ \ R̃)| = 2|H+(M̃∗, M̃ \ R̃)|

= 2|H+(Z, M̃ \ R̃)| ≤
∑
e∗∈Z

|H+(e∗, M̃ \ R̃)|

=
∑

e∗∈M̃∗2+

|H+(e∗,M \ H+(M∗
1 ,M))| =

∑
e∗∈M̃∗2+

|H+(e∗,M) \ H+(M∗
1 ,M)|, (32)

where the inequality holds because each edge of H+(Z, M̃) is hit at least twice by Z.
Combining (30) and (31), one obtains that |H+(M∗,M)| < |M∗| ≤ l, which contra-
dicts that M is l-locally optimal with respect to M∗. Hence — in contrast to the
indirect assumption — condition 5) holds, and this proves the lemma.

Note that if R = ∅, then Lemma 4.15 gives back (20) and (22) for l = 3, 4, re-
spectively. By Lemma 4.15, inequality (28) follows, meaning that the desired recur-
sion (16) gives a valid upper bound on the approximation ratio of the l-locally optimal
solutions.

Corollary 4.16. The approximation ratio of l-locally optimal d-distance matchings
is at most %l, where %l is as defined above.
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s1 s2 s3 s4

t1 t2

Figure 7: The wavy edges form a 2-locally optimal 2-distance matching M , and
M∗ = E \M is the optimal 2-distance matching. The approximation ratio |M∗|/|M | is
%2 = 2.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18

t1 t2 t3 t4 t5 t6 t7 t8

Figure 8: The wavy edges form a 3-locally optimal 5-distance matching M , and
M∗ = E \M is the optimal 5-distance matching. The approximation ratio |M∗|/|M | is
%3 = 9/5.

Proof. Let M∗ denote an optimal d-distance matching. By definition, M is l-locally
optimal with respect to M∗, therefore M is (∅, l)-locally optimal with respect to M∗.
By Theorem 4.14, one gets |M∗|/|M | ≤ %l, which completes the proof.

Corollary 4.17. For any constant ε > 0, there exist a polynomial-time algorithm for
the unweighted d-distance matching problem that achieves an approximation guarantee
of 3/2 + ε.

Proof. By Corollary 4.16, the approximation ratio of l-locally optimal solutions is at
most %l. One might easily show that liml→∞ %l = 3/2. Hence for any ε > 0, there
exists l0 ∈ N such that %l ≤ 3/2 + ε. To complete the proof, observe that l0 is
independent from the problem size, therefore one can compute an l0-locally optimal
solution in polynomial time. Note that the number of improvements is at most the
size of the matching and hence it is polynomial as well.

Remark 4.18. Figure 4a, 7 and 8 show that the upper bound on the approximation
ratio of l-locally optimal solutions given by Theorem 4.14 is tight for l = 1, 2 and 3,
respectively. It remains open whether the analysis is tight for l ≥ 4.

Remark 4.19. Similar proof shows that for any constant ε > 0, the above local-
search algorithm is a (3/2 + ε)-approximation algorithm for the unweighted cyclic
d-distance matching problem.
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5 Regular distance matching

The following theorem is a straightforward generalization of the well-known result
that every regular bipartite graph has a perfect matching.

Definition 5.1. An instance of the d-distance matching problem is r-regular if deg(s) =
r for each s ∈ S and the number of edges between t and Rd(si) is r for each t ∈ T
and i = 1, . . . , n− d+ 1.

Theorem 5.2. If a problem instance is r-regular, then there exists a perfect d-distance
matching.

Proof. There exists a perfect matching between {s1, . . . , sd} and T , because the in-
duced graph is r-regular. By induction, assume that the degrees of {s1, . . . , si−1} in
M are one, where i − 1 ≥ d. Let t denote the node that M assigns to si−d+1. If
sit 6∈ E, then the number of edges between t and Ld(si) is r − 1, meaning that the
instance at hand is not r-regular, hence sit ∈ E. Therefore, M ∪ {sit} is feasible for
the first i nodes of S, hence the claim follows.

If we leave out a perfect d-distance matching from an r-regular problem instance,
then it becomes an r− 1 regular instance, hence one gets the following generalization
of Kőnigs edge-coloring theorem [5, Page 74].

Corollary 5.3. If a problem instance is r-regular, then the edge set of the graph
partitions into r perfect d-distance matchings.

6 Conclusion

This paper introduced the d-distance matching problem. We proved that the problem
is NP-complete in general and admits a 3-approximation. We gave an FPT algorithm
parameterized by d and also settled the case when the size of T is constant. The
integrality gap of the natural integer programming model is shown to be at most
2− 1

2d−1
, and an LP-based approximation algorithm for the weighted case is given with

the same guarantee. Using a different approach, a combinatorial (2− 1
d
)-approximation

algorithm was also described. Several greedy approaches, including a local search
algorithm, were presented. The latter method achieves an approximation ratio of
3/2 + ε for any constant ε > 0 in the unweighted case.

The problem itself has several generalizations (e.g. pose degree bounds on the
nodes of both S and T , cyclic version of the problem, distance-constraints on both
node classes, etc.), which are subjects for further research.
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and Alpár Jüttner for their comments that greatly improved an earlier version of the
manuscript. The author is indebted to the anonymous reviewers of an earlier version
of the manuscript for their valuable comments and suggestions.

References

[1] K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sas-
sano. Models and solution techniques for frequency assignment problems. Annals
of Operations Research, 153(1):79–129, Sep 2007.

[2] J. Baste, D. Rautenbach, and I. Sau. Approximating maximum uniquely re-
stricted matchings in bipartite graphs. Discrete Applied Mathematics, 267:30–40,
2019.
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