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Extremal families of redundantly rigid
graphs in three dimensions

Tibor Jordán?, Christopher Poston??, and Ryan Roach? ? ?

Abstract

A rigid graph G is said to be k-vertex (resp. k-edge) rigid in Rd if it remains
rigid after the removal of less than k vertices (resp. edges). The definition of
k-vertex (resp. k-edge) globally rigid graphs in Rd is similar. We study each
of these four versions of redundant (global) rigidity and determine the smallest
number of edges in a k-vertex (resp. k-edge) rigid (resp. globally rigid) graph
on n vertices in R3 for all positive integers k, except for four special cases, where
we provide a close-to-tight bound.

1 Introduction

We start with an informal definition of rigid and globally rigid graphs and refer the
reader to [12, 16] for more details. A graph G = (V,E) is rigid in Rd if every general
position bar-and-joint realization of G in d dimensions, in which vertices correspond
to universal joints and edges correspond to rigid bars connecting their end-vertices,
is rigid in the sense that it has no continuous deformation that preserves the bar
lengths. Global rigidity is a stronger property: a graph G is globally rigid in Rd

if every general position d-dimensional bar-and-joint realization of G is unique up
to congruence: the bar lengths determine all pairwise distances between the joints.
Rigid and globally rigid graphs occur in several applications, including sensor network
localization [10], molecular conformation [7], formation control [24], and statics [14].
In some applications it is desirable to have a graph which remains rigid or globally
rigid even if some joints or bars are removed. This motivates the next definitions.

We say that a graph G = (V,E) is k-vertex rigid (resp. k-vertex globally rigid) in
Rd if G −X is rigid (resp. globally rigid) for all X ⊆ V with |X| ≤ k − 1. A graph
G = (V,E) on n vertices is said to be strongly minimally k-vertex rigid (resp. strongly
minimally k-vertex globally rigid) in Rd if it is k-vertex rigid (resp. k-vertex globally
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Section 1. Introduction 2

rigid) and no graph on n vertices with less than |E| edges satisfies this property. We
can define (strongly minimal) k-edge rigidity and k-edge global rigidity in a similar
way, by the deletion of edge sets, rather than vertex sets. It will be convenient to
use the following graph parameters. For a graph G we use Rd

v(G) (resp. Rd
e(G)) to

denote the largest integer ` for which G is `-vertex (resp. `-edge) rigid in Rd. The
corresponding parameters with respect to global rigidity are denoted by Rd

gv(G) and
Rd

ge(G).

Figure 1: The cube of a cycle. It is 3-vertex rigid in R3.

In this paper we investigate the following extremal problem: what is the smallest
number of edges in a strongly minimally k-vertex rigid (k-vertex globally rigid, k-edge
rigid, k-edge globally rigid, resp.) graph on n vertices in Rd? In R1 a graph is rigid
(resp. globally rigid) if it is connected (resp. 2-connected). Hence the corresponding
bounds on the size of strongly minimally rigid and globally rigid graphs follow from
basic results on highly connected graphs. The case d = 2 requires a different approach.
Following the solutions of some special cases (concerning k-vertex rigidity and k-vertex
global rigidity in the plane, for k ≤ 3), a recent paper by the first author [9] gave a
complete solution by determining the tight bounds for each of the four versions and
for all k ≥ 1.

For d ≥ 3 Kaszanitzky and Király [13] solved the k-vertex rigid version in the
special case when k = 2 (for all d ≥ 2) and for d = k = 3. All the other cases
remained open. It is worth noting that the characterization of rigid and globally rigid
graphs in Rd is known for d ≤ 2 and is a major open problem in rigidity theory for
d ≥ 3.

In spite of this fact we shall determine the smallest number of edges in a k-vertex
(resp. k-edge) rigid (resp. globally rigid) graph on n vertices in R3 for all positive
integers k, except for four special cases, where we provide a close-to-tight bound.
These special cases, which turned out to be the most difficult ones, are 4-vertex
rigidity, 3-vertex global rigidity, 2-vertex global rigidity, and 2-edge global rigidity in
three-space.

Note that in each of the extremal problems mentioned above, including our new
results, the lower and upper bounds and also the exact solutions are valid for ”n large
enough, depending on k”. Here ”large enough” typically means some constant times
k. It is a natural phenomenon which is present already in the formula for the size a
minimally rigid graph (k = 1).
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Section 2. Preliminary results 3

Redundancy 1 2 3 4 5 · · · k

Vertex rigidity 3n− 6 3n− 3 3n 3n+ 5+ ε1 d3.5ne · · · d (k+2)n

2
e

Edge rigidity 3n− 6 3n− 5 3n− 4 3n d3.5ne · · · d (k+2)n

2
e

Vertex global rigidity 3n− 5 3n− 2 + ε2 3n+ 2+ ε3 d3.5ne 4n · · · d (k+3)n

2
e

Edge global rigidity 3n− 5 3n− 4 + ε4 3n d3.5ne 4n · · · d (k+3)n

2
e

Table 1: The extremal values in R3 for the four versions and for all k ≥ 1. The values
obtained in this paper are in boldface. In four special cases the bounds are not tight
but get close to the right value. We show that ε1 ≤ 15, ε3 ≤ 18, and ε2, ε4 ≤ 1.

The structure of the paper is as follows. In the next section we collect those previous
results that we shall use, including ones that establish connections between the four
different parameters we are dealing with. In Sections 3 and 4 we solve the k-vertex
and k-edge rigid versions of our problem. In Section 5 we deduce the solutions for
vertex and edge redundant global rigidity. In Section 6 we show an additional result
that settles a conjecture concerning the two-dimensional case of our extremal problem.
Section 7 contains a few concluding remarks.

2 Preliminary results

The next lemma shows that in the definition of k-vertex (global) rigidity it suffices
to consider the removal of vertex sets of cardinality exactly k − 1. Note that the
corresponding observation for k-edge (global) rigidity is straightforward, since edge
addition preserves rigidity as well as global rigidity.

Lemma 2.1. [9, 13, 24] Let G = (V,E) be a graph on n ≥ k + 1 vertices. Then
(i) G is k-vertex rigid in Rd if and only if G −X is rigid in Rd for all X ⊆ V with
|X| = k − 1, and
(ii) G is k-vertex globally rigid in Rd if and only if G−X is globally rigid in Rd for
all X ⊆ V with |X| = k − 1.

The four redundancy parameters satisfy the following inequalities. The first one is
based on a theorem due to S. Tanigawa [19] which states that 2-vertex rigid graphs
are globally rigid.

Lemma 2.2. [9] Let G = (V,E) be a k-vertex-rigid graph in Rd for some k ≥ 2.
Then G is (k − 1)-vertex globally rigid. Hence for all d ≥ 1 we have

Rd
gv(G) ≥ Rd

v(G)− 1. (1)

The next inequalities show that the edge redundancy cannot be smaller than the
vertex redundancy.

Lemma 2.3. [9, 24] Let G be a non-complete graph and let d ≥ 1. Then

Rd
v(G) ≤ Rd

e(G), (2)

Rd
gv(G) ≤ Rd

ge(G). (3)
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2.1 Operations 4

The last lemma of this section is based on a theorem due to Hendrickson [6] which
states that globally rigid graphs (on at least d+2 vertices) are 2-edge-rigid. Note that
2-edge rigid is the same as redundantly rigid, which is also a frequently used term in
rigidity theory.

Lemma 2.4. [9] Let G = (V,E) be a globally rigid graph in Rd on n ≥ d+ 2 vertices.
Then

Rd
e(G) ≥ Rd

ge(G) + 1. (4)

2.1 Operations

As we noted earlier, the characterization of rigid and globally rigid graphs in R3 is
still an open problem. Verifying that the graphs we define, as well as their subgraphs
obtained by removing a certain number of vertices or edges, are indeed rigid or globally
rigid is the most difficult part of our solutions. In our proofs we shall rely on sufficient
conditions based on various inductive steps, i.e. local graph operations that preserve
rigidity and-or global rigidity.

The (d-dimensional) 0-extension operation adds a new vertex v to a graph as well
as d new edges incident with v. The (d-dimensional) 1-extension operation removes
an edge vivj and adds a new vertex v as well as a set of d+1 new edges incident with v
which includes vvi and vvj. See Figure 2. The first two statements of the next lemma
are well-known, see e.g. [16]. The third one is based on a result due to Connelly [2].
We shall use this lemma several times, without explicitely referring to it.

vv vv

Figure 2: The 1-extension and the triangle based 2-extension operations.

Lemma 2.5. Let G be a graph and d ≥ 1 be an integer. Then
(i) if G is rigid in Rd and G′ is obtained from G by a 0-extension or 1-extension then
G′ is rigid in Rd,
(ii) if G is 2-edge rigid in Rd and G′ is obtained from G by a 1-extension then G′ is
2-edge rigid in Rd,
(iii) if G is globally rigid in Rd on at least d + 2 vertices and G′ is obtained from G
by a 1-extension then G′ is globally rigid in Rd.

The (d-dimensional) 2-extension operation removes two disjoint edges vivj and vqvr
from a graph and adds a new vertex v, along with a set of d + 2 edges incident with
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2.2 Coning 5

v including vvi, vvj, vvq, and vvr. The next lemma is folklore, a proof can be found
e.g. in [13].

Lemma 2.6. Let G be a graph and suppose that the vertices vi, vj, vs form a triangle
and vqvr is an edge disjoint from this triangle. Then if G is rigid in R3 an G′ is
obtained from G by a 2-extension on edges vivj, vqvr, then G′ is rigid in R3.

We shall refer to the operation described in Lemma 2.6 as triangle based 2-extension.
See Figure 2.

Let G be a graph and let uv, vw be a pair of incident edges in G. Let Ev
uw be the

set of the remaining edges incident with v and let Ev
uw = F ∪ F ′ be a bipartition of

Ev
uw. The vertex splitting operation (at v, on edges uv, vw) adds a new vertex v′ to

the graph, adds the new edges uv′, v′w, vv′, and then replaces every edge xv in F ′ by
an edge xv′. The edges in F stay connected to v. See Figure 3.

u

w

v

u

w

v

v′

Figure 3: The vertex splitting operation.

A similar operation is extended vertex splitting: it picks three edges uv, vw, vz,
partitions the set Ev

uwz of the remaining edges incident with v into two parts Ev
uw =

F ∪ F ′, adds a new vertex v′ to the graph, adds the new edges uv′, v′w, v′z, and then
replaces every edge xv in F ′ by an edge xv′. The next theorem is due to Whiteley.

Theorem 2.7. [22], [23, Theorem 9.3.7] If G is rigid in R3 and G′ is obtained from
G by a vertex splitting or an extended vertex splitting operation then G′ is also rigid
in R3.

2.2 Coning

There is another operation that we shall use to transfer (global) rigidity to higher
dimensions. The cone of a graph G is obtained from G by adding a new vertex v and
new edges from v to every vertex of G. See Figure 4. Whiteley [21] (resp. Connelly
and Whiteley [3]) proved that a graph G is rigid (resp. globally rigid) in Rd if and
only if the cone of G is rigid (resp. globally rigid) in Rd+1. We shall refer to these
results as the coning theorem(s).
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2.3 Lower bounds 6

Figure 4: Coned, Squared Cycle

We shall need the following new result,
which shows that redundant (global) rigidity
can also be transfered to higher dimensions
by coning, in a certain sense.

Theorem 2.8. Let G be a graph and let k ≥
1 be an integer. Then
(i) if G is k-vertex globally rigid in Rd then
the cone of G is k-edge globally rigid in Rd+1,
(ii) if G is k-vertex rigid in Rd then the cone
of G is k-edge rigid in Rd+1.

Proof. We prove (i). Let G be a k-vertex
globally rigid graph in Rd. Let H denote the
cone of G. Choose a set F of k − 1 edges in
H. We have to show that H − F is globally rigid in Rd+1.

If no edge in F is incident with v then H is the cone of G − F . Now G − F is
globally rigid in Rd by Lemma 2.3 and our assumption on G. Hence H is globally
rigid in Rd+1 by the globally rigid coning theorem.

Next suppose that the set of edges of F incident with v, denoted by F ′, is not
empty. Let T be the set of the end-vertices of the edges in F ′ different from v and let
t = |T | = |F ′|.

Since G is k-vertex globally rigid in Rd, the graph G− T is (k − t)-vertex globally
rigid in Rd. Hence it is also (k − t)-edge globally rigid by (3). This implies, by using
|F−F ′| = k−1−t, that G−T−(F−F ′) is globally rigid in Rd. Thus H−T−(F−F ′)
is globally rigid in Rd+1 by the globally rigid coning theorem.

Note that each vertex in G has degree at least d+ k. Moreover, each vertex w ∈ T
has at most t− 1 neighbours in T (in G as well as in H), and has at most k − 1− t
edges in F that connect it to a vertex in V (G)− T . Thus there exist at least d+ k−
(t− 1)− (k − 1− t) ≥ d+ 2 edges from w to V (G)− T in H − T − F .

Therefore we can add the vertices of T to H − T − F one by one, without using
edges from F , preserving global rigidity in Rd+1. Hence H − F is globally rigid in
Rd+1. This completes the proof.

The proof of (ii) is very similar: it can be obtained by replacing global rigidity by
rigidity, and the degree lower bound d+ k by (d− 1) + k in the proof above.

2.3 Lower bounds

There are three natural lower bounds for the size of a k-vertex (k-edge) rigid (globally
rigid) graph. The first bound (see e.g. [13]) works for each of the four versions
and comes from the following basic property of (globally) rigid graphs: a rigid (resp.
globally rigid) graph G in Rd on at least d + 1 (resp. d + 2) vertices has minimum
degree at least d (resp. d + 1). This implies that the minimum degree is at least
d + k − 1 (resp. d + k) if the level of redundancy of the graph is k. By using the
minimum degree bound we immediately obtain that the number of edges in a k-vertex
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2.3 Lower bounds 7

(k-edge) rigid graph on n ≥ d+ 1 vertices is at least⌈
n(d+ k − 1)

2

⌉
(5)

and the number of edges in a k-vertex (k-edge) globally rigid graph on n ≥ d + 2
vertices is at least ⌈

n(d+ k)

2

⌉
(6)

The other bounds use the next two well-known inequalities.

Lemma 2.9. Let G = (V,E) be a rigid graph in Rd with |V | ≥ d + 1. Then |E| ≥
d|V | −

(
d+1
2

)
.

Lemma 2.10. Let G = (V,E) be a globally rigid graph in Rd with |V | ≥ d+ 2. Then
|E| ≥ d|V | −

(
d+1
2

)
+ 1.

Rigid graphs for which equality holds in Lemma 2.9 are called minimally rigid in
Rd. Minimally rigid graphs exist for all d and n ≥ d + 1. There exist globally rigid
graphs, for every d and n ≥ d+2, that satisfy the bound of Lemma 2.10 with equality
(see e.g. [9]). Hence the tight bounds in Lemmas 2.9 and 2.10 give rise to the tight
bounds for our extremal problems in the special case k = 1.

We also have the following corollaries for edge-redundancy. The number of edges
in a k-edge rigid graph in Rd on n ≥ d+ 1 vertices is at least

dn−
(
d+ 1

2

)
+ (k − 1). (7)

The number of edges in a k-edge globally rigid graph in Rd on n ≥ d + 2 vertices is
at least

dn−
(
d+ 1

2

)
+ k. (8)

The third bound, for vertex redundancy, is based on [13, Theorem 5], which works
for k-vertex rigidity for all d and k. The next lemma improves the corresponding
lower bound of [13] by one.

Lemma 2.11. Let G = (V,E) be a 4-vertex rigid graph in R3 on |V | ≥ 15 vertices.
Then |E| ≥ 3|V |+ 5.

Proof. By Lemma 2.9 a rigid graph on at least three vertices satisfies |E| ≥ 3|V | − 6,
and hence the sum of the degrees of its vertices is at least 6|V |−12. Thus the maximum
degree of G is at least six, whenever |V | ≥ 13. Remove a maximum degree vertex v1
from G, then remove the maximum degree vertex v2 of (the rigid graph) G− v1, and
repeat this once more by removing the maximum degree vertex v3 of G−v1−v2. The
resulting graph, denoted by H, is rigid. Thus |E(H)| ≥ 3|V (H)| − 6 = 3|V | − 15.
Since we removed at least six edges when we removed v1, v2, and v3, we have |E| ≥
3|V | − 15 + 18 = 3|V |+ 3.
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Section 3. Vertex-Redundant Rigidity in R3 8

The last inequality shows that the maximum degree of G is in fact at least seven.
This can be used to strengthen the above argument and deduce that |E| ≥ 3|V |+ 4.

Suppose that equality holds and G has exactly 3|V | + 4 edges. Then by rereading
the above arguments we obtain that the maximum degree of G is equal to seven, and
the vertices of degree seven are pairwise adjacent. Let us assume that v1, v2, v3 are
pairwise non-adjacent. Then the number of edges from {v1, v2, v3} to V (H) is equal
to 19. Since the total degree of H is 6|V (H)| − 12, these edges make the degree of at
least seven vertices of H equal to seven in G. But it is impossible, since (as v1 also
has degree seven) the graph cannot have eight pairwise adjacent vertices of degree
seven. Similar arguments can be used in the remaining cases to show that we cannot
have equality. Thus |E| ≥ 3|V |+ 5, as claimed.

A proof similar to the first part of the proof of Lemma 2.11 and Lemma 2.10 give
the following bounds.

Lemma 2.12. Let G = (V,E) be a 2-vertex (resp. 3-vertex) globally rigid graph in
R3 on |V | ≥ 13 vertices. Then |E| ≥ 3|V | − 2 (resp. |E| ≥ 3|V |+ 2).

We close this subsection by pointing out an interesting phenomenon concerning the
tight bounds of our problems (in every dimension d). In the case of k-vertex (global)
rigidity there seems to be a threshold value k0 such that the tight bounds for k < k0
are equal to d|V | + c(d, k) for some constant c depending only on the redundancy k
and the dimension d. On the other hand, if k ≥ k0, then the degree lower bounds (5)
and (6) are tight. In the case of k-edge (global) rigidity there is a similar value `0 such
that the tight bounds for k < `0 are equal to the corresponding lower bounds (7) and
(8), while for k ≥ `0 the tight bound matches the degree lower bounds (5) and (6).

We call the set of values below k0 (resp. l0) the lower range, and the rest the upper
range, whenever these threshold values exist. In [9] it was shown that the upper and
lower ranges indeed exist in each of the four versions of the problem for d = 2. In this
paper we extend this result to d = 3.

Concerning the applications of our extremal constructions the values k in the lower
range have a remarkable property: there exist graphs (frameworks, formations, net-
works) of redundancy k which need only a constant number of extra edges (bars,
connections, measurements) compared to a minimally (globally) rigid graph.

3 Vertex-Redundant Rigidity in R3

The tight bounds for the size of strongly minimally k-vertex rigid graphs in R3 on
n vertices are known for k = 1, 2, 3. The case k = 1 is easy: the minimally rigid
graphs are the extremal graphs and the bound is 3n − 6, for n ≥ 3. For k = 2, 3
Kaszanitzky and Király [13] showed that the bounds are 3n− 3 and 3n respectively,
for n sufficiently large.

In this section we determine the exact bounds for all k ≥ 5 and give a close-to-tight
upper bound for k = 4.
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3.1 k-vertex rigidity for k ≥ 5 9

3.1 k-vertex rigidity for k ≥ 5

The r’th power of a graph G, denoted by Gr, is obtained from G by adding all edges
uv, for which u and v are non-adjacent vertices of G whose distance is at most r in
G. In our constructions we shall frequently use powers of cycles.

Figure 5: The graphs L5
20 and D6

20.

In this subsection we analyse two families of graphs and show that each graph in
these families is k-vertex rigid. Let Cn be a cycle on n vertices, where n is even. It
will be convenient to say that an edge on the vertex set of Cn is of length m if it
connects two vertices of the cycle which are at distance m in Cn. An edge of length
n
2

is a longest diagonal. The second longest diagonals are the edges of length n
2
− 1.

Let k ≥ 5 be an integer. For odd values of k the graph Lk
n is obtained from C

(k−1)/2
n

by adding all edges of length k+3
2

as well as all longest diagonals. For even values of

k the graph Dk
n is obtained from C

(k−2)/2
n by adding all edges of length k+2

2
as well as

all second longest diagonals. See Figure 5.
Note that the graphs Lk

n and Dk
n are both (k + 2)-regular and for k ≥ 7 they

contain C3
n as a spanning subgraph. It is worth mentioning that the graph obtained

from C
(k+1)/2
n by adding all longest diagonals is not k-vertex rigid in R3. It will be

convenient to deal with the cases k ≥ 7 separately, although the proof for k = 5, 6 is
similar.

Theorem 3.1. Let k ≥ 7 and let n ≥ 10k be even. Then the graphs Lk
n (for k odd)

and Dk
n (for k even) are k-vertex rigid in R3.

Proof. Let G = (V,E) denote the graph in question (which is Lk
n or Dk

n, depending
on the parity of k) and let S ⊆ V be a set of k− 1 vertices. By Lemma 2.1 it suffices
to show that H = G− S is rigid.

By partitioning V into k − 1 pairs of opposite intervals with size 6 (i.e. sets of
6 consecutive vertices on the cycle) and using that n ≥ 10k and |S| = k − 1, we
can deduce that H contains two intervals I1, I2 of size six each, positioned exactly
opposite each other on the cycle. Furthermore, since C3

n is a spanning subgraph of G,
the subgraphs H[I1] and H[I2] are both rigid: they can be obtained from a triangle
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3.1 k-vertex rigidity for k ≥ 5 10

graph by 0-extensions. Due to the existence of the (second) longest diagonals, these
intervals are connected by six disjoint edges in H, which implies that H[I1∪I2] is also
rigid.

t1 t2

t3 t4

... ...

... ...

...

...

t1 t2

t3 t4

Figure 6: The rigid substructure J ,
whose ends appear as ti, i = 1, ..., 4.

Let us extend I1 and I2 to maximal
intervals inH and let J ⊂ V (H) be the
union of these maximal intervals. We
define the ends of J naturally, denot-
ing them by t1, t2, t3, and t4, see Figure
6. It is possible that the two maximal
intervals are the same, in which case J
itself is an interval with only two ends,
denoted by t2 and t4. A similar argu-
ment, using 0-extensions, shows that
H[J ] is rigid. We shall show that J can
be extended further to a rigid spanning
subgraph of H.

The vertices of the set S that we removed from G are distributed between the two
pairs of ends. The vertices of V − J next to the ends are all in S by the definition of
J . Let Sin and Sout denote the set of vertices of S between t1 and t3 (resp. t2 and t4).

Case 1: Odd k ≥ 7.

Since |S| = k − 1, we may suppose, without loss of generality, that |Sin| ≤ k−1
2

.
Let us add the vertices of H between t1 and t3 one by one, as long as we can, by
applying 0-extensions, moving outward from t1 toward t3, and using edges of length
at most k+3

2
. Suppose we get stuck at some vertex v. Since G contains k+1

2
edges of

length at most k+3
2

going backwards, S must contain at least k+3
2
− 3 out of the k+3

2

vertices that precede v on the cycle in order to prevent a 0-extension. If this happens
then let us add vertices moving from t3 toward t1 in a similar fashion. If we get stuck
again, then we can conclude that S contains at least 2(k+3

2
− 3) = k − 3 vertices in

total between t1 and t3. But this is impossible, as |Sin| ≤ k−1
2

< k − 3, whenever
k ≥ 7. Therefore we can add all vertices of H between t1 and t3, preserving rigidity.
By the same argument we can add the vertices between t2 and t4 as well and obtain a
rigid spanning subgraph of H, provided |Sout| ≤ k− 4 holds. So we may assume that
|Sout| ≥ k − 3. We introduce three subcases.

Subcase 1.1: |Sout| = k − 3.

In this case |Sin| = 2. Let Sin = {vS, uS} be the vertices removed from the opposite
side. We have at most two vertices between t2 and t4, call them u and v, which are
connected to Sin by a longest diagonal. Let us follow the same strategy and try to
add the missing vertices of H by 0-extensions. For all vertices of H between t2 and
t4, except for u and v, we can now use the longest diagonals, too, when we attempt
to add the vertex by a 0-extension. Thus, by using the previous argument and the
assumption |Sout| = k − 3, we can deduce that the only way to get stuck from both
directions is to get stuck at u and v, in such a way that we have exactly k−3

2
vertices

of S between t2 and v, and the same number between t4 and u.
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3.1 k-vertex rigidity for k ≥ 5 11

In this case we can proceed as follows. Let J ′ denote the set of vertices already in
the rigid subgraph we have constructed. We continue adding vertices from v towards
u, but when we add v, we also add a temporary edge vw, where w is a neighbour of
u in J ′, to make the 0-extension work. After that we add the remaining vertices by
1-extensions, migrating the temporary edge to the next vertex in every iteration. At
the end it aligns with an edge of H. Therefore we obtain a rigid spanning subgraph
of H, as required.

Subcase 1.2: |Sout| = k − 2.

In this case |Sin| = 1. Let Sin = {vS}. Hence there is at most one vertex between
t2 and t4, call it v, which is connected to a vertex of S by a longest diagonal. At
every other vertex we can use the longest diagonal, too, when we attempt to add it
by a 0-extension. Thus if we get stuck at some vertex, which is different from v, then
there must be at least k+3

2
− 2 vertices of S in the set of the k+3

2
vertices preceding

it. Since 2(k+3
2
− 2) = k − 1 > k − 2 = |Sout|, it follows that if we get stuck then

it happens at a pair u, v, where we have k+3
2
− 2 vertices of S preceding u, and we

have k+3
2
− 3 vertices of S preceding v on the other side. Then we proceed from u by

adding a temporary edge, like in the previous subcase, and obtain a rigid spanning
subgraph of H.

Subcase 1.3: |Sout| = k − 1.

In this case we can use long diagonals at each vertex, showing that if we get stuck
at a pair u, v, then we must have exactly k+3

2
−2 = k−1

2
vertices of S preceding each of

them from the appropriate direction. Then we proceed from u to v, by first adding a
temporary edge uw, where w is a neighbour of v in J ′, and then applying 1-extensions,
migrating the temporary edge until it aligns with an edge of H. Note that here we
also need the fact that for the vertex u′ right after u we can use the edge of length
(k+ 3)/2 going back, since its other end-vertex cannot be in S (for otherwise u could
have been added by a 0-extension). This completes the proof of Case 1, it follows
that H is indeed rigid in R3.

Case 2: Even k ≥ 8.

Now we consider the second family of graphs, Dk
n, for even k ≥ 8. As in Case 1,

we attempt to add the non-removed vertices between t1 and t3 (and then between t2
and t4) by 0-extensions. We may again suppose that |Sin| ≤ k

2
− 1. If S contains

at most k
2
− 3 vertices out of the k

2
+ 1 vertices preceding the next vertex v, we can

add v by a 0-extension and continue with the next vertex. Since k
2
− 1 < k − 4 for

k ≥ 8, it follows that we cannot get stuck from both directions. Thus we can add all
non-removed vertices between t1 and t3, preserving rigidity. Similarly, if |Sout| ≤ k−5,
then we can add all vertices of H and conclude that H is rigid. So we may assume
that |Sout| ≥ k − 4. We introduce four subcases. In each of these subcases we shall
use the fact that when we attempt to add a new vertex v between t2 and t4 then we
can also use one or two second longest diagonals, leading to the opposite side, unless
it leads to a vertex of S. This means we must have even more vertices of S preceding
v if we get stuck: at least k

2
− 1, or even k

2
.

Subcase 2.1: k − 4 ≤ |Sout| ≤ k − 2.
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3.1 k-vertex rigidity for k ≥ 5 12

If |Sout| = k − 4, we have three (resp. two, one for |Sout| = k − 3, k − 2) vertices
of S on the opposite side. So the only way to get stuck from both directions, say at
vertices u and v, is if the three (resp. two, one) vertices of Sin hit each of the four
(resp. two, one) second longest diagonals incident with u and v. Then there is exactly
one vertex, call it w, between u and v, so we can add w first by a 0-extension and
only then u and v.

Subcase 2.2: |Sout| = k − 1.

Here, both second longest diagonals are available for every vertex coming from
both t2 and t4; we may use 0-extensions from at least one direction and attach every
non-removed vertex. This completes the proof of Case 2. The theorem follows.

Next we consider the cases k = 5, 6. Our approach is similar to that of Theorem
3.1 but the lack of edges with length 3 requires a different argument to show that
the initial rigid structure spanned by two opposite intervals exists and also makes the
cases analysis slightly more complicated. We shall follow the notation introduced in
the proof of Theorem 3.1 wherever it is possible.

Theorem 3.2. Let n ≥ 82 be even. Then the graph L5
n is 5-vertex rigid and D6

n is
6-vertex rigid in R3.

Proof. The lower bound on n ensures the existence of two exactly opposite intervals
I1 and I2 of size at least eight in H. These two intervals are connected by (at least)
eight (second) longest diagonals in L5

n as well as in D6
n. First we show that H[I1 ∪ I2]

is rigid.
Consider L5

n. We begin by constructing each interval from right to left, but starting
with the second vertex (the first will be added last). We insert a temporary edge
connecting the second vertex to the fifth in each. Then each subsequent vertex is
added using a 0-extension connecting it to the first-, second-, and fourth-previous
vertices. We now have two disjoint rigid structures on seven vertices each; we may
connect them to form a single rigid structure using the six middle longest diagonals.
Lastly, we attach the first vertex of each interval using a 1-extension involving a
longest diagonal and edges of distance 1, 2, and 4; the temporary edges form a three-
cycle with the edges of distance 1 and 4, so they are removed. The argument for D6

n

is similar. Having established that this subgraph is rigid, we define J , the ends ti,
1 ≤ i ≤ 4, as well as Sin, Sout as above. Note that we can again use 0-extensions to
show that H[J ] is rigid.

Case 1: k = 5.

Recall that in L5
n each vertex is incident with edges of length 1,2, and 4 (in both

directions along the cycle), and a longest diagonal. We have |S| = 4. We may assume
that |Sout| ≥ 2 which leads to three subcases.

Subcase 1.1: |Sout| = 2.

Now |Sin| = 2. Let Sin = {uS, vS}. First suppose that we have at most three
vertices on the cycle between uS and vS. If they are next to each other on the cycle
then there are no vertices between them to attach, so we are done. If there is one
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3.1 k-vertex rigidity for k ≥ 5 13

vertex between them, it may be attached by a 0-extension using edges of length 2
and one of length 4. Finally, if there are 2 or 3 vertices between them, then it is easy
to check that we can add them by two or three 0-extensions. So in the rest of this
subcase we may assume that uS and vS are separated by at least four vertices on the
cycle.

Let m ≥ 4 denote the number of vertices between uS and vS. We extend J by
adding vertices one by one, as before. We proceed outward from t1. Let uS be the
vertex next to t1. The operations we perform depend on m mod 4; the goal is to use
three temporary edges so that we can use 1-extensions to ultimately place them on
the three vertices leading up to the second removed vertex vS, as temporary edges
attaching them to the 1st, 2nd, and 3rd vertices in I2 respectively (counting inward
from t3). Then we will be done, since these edges of length 4 already exist in H.

If m ≡ 0 mod 4, then the first vertex after uS is attached using a 0-extension
incorporating the usual edges of length 2 and 4, along with a temporary edge con-
necting it to the 2nd vertex in I2. The next vertex is added using a 0-extension with
a temporary edge connecting it to the 1st vertex in I2. Then the third vertex after
the removed one is attached by a 1-extension with edges length 1 and 4, along with
one of length 2 and a temporary edge connecting to the 2nd vertex in I2 (this removes
the first temporary edge). Finally, the fourth vertex is added using a 0-extension with
a temporary edge connecting to the 3rd vertex in I2. Then the remaining vertices
are added in groups of size four by using 0- and 1-extensions so that the end-vertices
of the temporary edges are moved towards vS keeping the same pattern. A similar
strategy works for m ≡ i mod 4, 1 ≤ i ≤ 3. We omit the details.

The temporary edges now align with edges in H, implying that we have attached
every non-removed vertex between t1 and t3 while preserving rigidity. Since |Sout| = 2,
the same process may be followed for the vertices between t2 and t4, resulting in a
rigid spanning subgraph of H. This completes the proof of Subcase 1.1.

Subcase 1.2: |Sout| = 3.

In this case |Sin| = 1 and hence there are no vertices to attach between t1 and t3,
so we can focus on the other side. Furthermore, we have at most one vertex between
t2 and t4, say u, whose longest diagonal leads to the single vertex of S on the other
side. Observe that due to the existence of longest diagonals, the two vertices of S
next to t2 and t4 cannot block the 0-extensions at a vertex v (v 6= u), and hence the
vertices may now be added starting from t2 or t4 using 0-extensions until either the
third vertex of Sout, call it s, is encountered, or we reach u. Then we add a temporary
edge connecting u to the last vertex added from the opposite end (if the other two
removed vertices are neighbors, we connect it to the vertex distance 4 away in J).
Then proceed by 1-extensions until the temporary edge aligns with an edge of H and
all non-removed vertices, including the vertices from u up to s, are included.

Subcase 1.3: |Sout| = 4.

We may now use longest diagonals to attach every vertex since Sin = ∅. Let us
denote the vertices of Sout, in order as encountered traveling from et to t4, by s1, s2,
s3, and s4. Due to the longest diagonals, we may attach the vertices between s1 and
s2 and those between s4 and s3 by 0-extensions without any trouble. So it remains
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3.1 k-vertex rigidity for k ≥ 5 14

to add the vertices between s2 and s3. If s1 and s2 are separated by at least three
vertices on the cycle then we can simply continue attaching the vertices which occur
after v2 and up to v3 by 0-extensions, completing the rigid spanning subgraph of H.
It is easy to check that if we s1 and s2 are separated by at most two vertices then
we can proceed by using only a single temporary edge, which is attached to the first
vertex after v3 coming from t2 (or to the third one after v3, if v3 and v4 are neighbors).
Subsequent 1-extensions are used to attach the remaining vertices between v2 and v3,
moving the temporary edge until it is of length 4 or 2. It follows that H is rigid in
R3 in this subcase, too. With this final subcase the argument for k = 5 is complete.

Case 2: k = 6.

Now we consider D6
n, in which each vertex is indicent with edges of length 1,2,

and 4, as well as two second longest diagonals. We have |S| = 5. We may suppose
that |Sin| ≤ 2. By the analysis of Case 1 we conclude that all non-removed vertices
between t1 and t3 can be added preserving rigidity. It remains to attach the non-
removed vertices between t2 and t4. We have |Sout| ≥ 3.

Subcase 2.1: |Sout| = 3.

We we may now use the second longest diagonals when we perform the 0-extensions.
We attach vertices from two directions, starting from t2 and t4. If at least one second
longest diagonal is available at each vertex, we can simply add all vertices by a 0-
extensions and complete the process. Otherwise there is a single vertex, call it v, for
which both of the two incident second longest diagonals lead to Sin. Then at least
one second longest diagonal is available at every other vertex and it is easy to see that
we can again add all vertices but v by 0-extensions, and then complete the process by
adding v.

Subcase 2.2: |Sout| = 4.

In this case |Sin| = 1, and hence all but two vertices (say u, v) have two second
longest diagonals available and u and v also have at least one. So we can keep
on adding the non-removed vertices by 0-extensions, attempting to extend the rigid
subgraph from both directions, unless we are in the unique situation where we can
get stuck: only three vertices u,w, v remain, in this order on the cycle, and one of
the second longest diagonals incident with u and v are blocked. Then we add w by a
0-extension, and then the other two vertices.

Subcase 2.3: |Sout| = 5.

Here the two long diagonals are available for every vertex to be attached, so we
may simply 0-attach past two vertices of S from both directions until we attach all
the non-removed vertices and form a rigid spanning subgraph of H. This shows that
H is rigid and completes the proof.

As a corollary we obtain the following result.

Theorem 3.3. Let k ≥ 5 and let n ≥ 12k + 9 be even. Then the number of edges in
a strongly minimally k-vertex rigid graph on n vertices in R3 is equal to d (k+2)n

2
e.
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3.2 4-vertex rigidity 15

We may observe that, strictly speaking, Theorem 3.3 does not give a complete
solution to the extremal problem since it does not cover the case when n is odd. It
may be possible to extend the construction and the proof for odd values of n but
we do not attempt to work out the details in this paper. It is perhaps not a major
shortcoming since Theorem 3.3 gives the tight bound for infinitely many values of n.
Furthermore, it also gives the “asymptotic” answer for all n: it is due to the fact that
adding a new vertex of degree d + k − 1 preserves k-vertex rigidity. We can apply
this operation to any extremal graph on n vertices, with n even, to obtain an almost
extremal graph for n odd.

Theorem 3.3 is one of the key results in the sense that it will easily imply the
solutions to the k-edge rigid, k-vertex globally rigid, and k-edge globally rigid versions
in the upper range. Our previous remark on the parity of n applies to each of these
corollaries.

3.2 4-vertex rigidity

We have an upper bound for the size of a strongly minimally 4-vertex connected graph
on n vertices, for n sufficiently large. Recall the lower bound 3n + 5 from Lemma
2.11. Since the proof of the following result is based on a lengthy case analysis and
the constant term is probably not tight, the construction and a proof sketch are given
in the Appendix.

Theorem 3.4. Let G be a strongly minimally 4-vertex rigid graph on n ≥ 60 vertices
in R3. Then G has at most 3n+ 20 edges.

4 Edge-Redundant Rigidity in R3

The k-edge rigid version of our extremal problem has not been studied before. In this
section we give a complete solution, for all k ≥ 1. The cases k = 1, 2 are easy: the
tight bounds are 3n− 6 and 3n− 5, respectively. The extremal graphs for k = 1 are
the minimally rigid graphs. For k = 2 we can construct an extremal graph for all
n ≥ 5 by applying a sequence of 1-extensions to K5, c.f. Lemma 2.5. The case k = 3
is more difficult.

4.1 3-edge rigidity

In this subsection we show an infinite family of 3-edge rigid graphs in R3 in which each
member Gn, on n vertices, has 3n− 4 edges, matching the lower bound from (7). We
shall need the following definitions and previous results. A triangulation is a maximal
planar graph. A braced triangulation is a graph obtained from a triangulation by
adding a non-empty set of new edges, called the bracing edges. LetG be a triangulation
(with a fixed planar embedding) and let C = B ∪ H be a designated set of internally
disjoint regions (bounded by cycles of length at least four in G). Then the block-and-
hole graph G′, with block-and-hole set C, is obtained from G by making each subgraph
induced by a block rigid (by adding new edges) and making each subgraph induced by
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4.1 3-edge rigidity 16

a hole a cycle (by removing all internal edges and vertices). See [4, 5] for more details.
We shall only consider block-and-hole sets with at most one block and at most two
holes, each of size at most five. The following result is a corollary of a celebrated
theorem due to Cauchy from 1813.

Theorem 4.1. (Cauchy) Every triangulation is rigid in R3.

The next result, for a single bracing edge, is due to Whiteley. The general case is
from [11].

Theorem 4.2. [11, 20] Every 4-connected braced triangulation is 2-edge rigid in R3.

Let G be a block-and-hole graph with block-and-hole set C = B ∪H and let B′ and
H′ be subsets of the blocks and holes, respectively, from C. Let C ′ denote their union.
The index of C ′ is defined to be

ind(C ′) =
∑
B∈B′

(|B| − 3)−
∑
H∈H′

(|H| − 3)

A block-and-hole graph G is said to satisfy the girth inequalitites if, for every cycle C
in G and every planar realization of G,

|V (C)| ≥ |ind(C ′)|+ 3,

where C ′ is the collection of blocks and holes of G which lie inside C.

Theorem 4.3. [4, Theorem 46] Let G be a block-and-hole graph with a single block.
Then G is minimally rigid in R3 if and only if G satisfies the girth inequalities.

The inverse operation of vertex splitting is edge contraction. It identifies two ad-
jacent vertices u, v with exactly two common neighbours (and removes the resulting
extra copies of parallel edges and the loop). It takes a triangulation to a smaller
triangulation. Note that an edge in a triangulation is contractible if and only if it
belongs to exactly two triangles. If it belongs to three or more triangles then one of
them is a non-facial triangle (in every planar embedding) whose vertex set forms a
3-vertex separator. Hence every edge in a 4-connected triangulation is contractible.

We shall also use the following observations: (i) let G be a k-connected graph and
let G′ be obtained from G by a vertex splitting operation. If G′ has minimum degree
at least k then G′ is also k-connected; (ii) the edge contraction operation decreases
the vertex-connectivity of the graph by at most one.

Now we are ready to describe our construction and analyse its edge redundancy.
Let G be a 5-connected triangulation on n ≥ 12 vertices1. Fix a planar drawing of
G. Choose a five-cycle C in G whose interior contains three triangular faces. Thus C
has two diagonals.

1It is well-known that 5-connected triangulations exist for all n ≥ 12, see e.g. [1]. The smallest
one is the graph of the icosahedron.
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Figure 7: Block and neighbourhood.

Let s, z, y, x, t be the vertices of the cy-
cle, labeled clock-wise, and let sx, sy be
the diagonals inside C. If necessary, ap-
ply vertex splitting operations (preserv-
ing planarity) to make sure the degrees of
t, x, y, and z are equal to five. Then add
two bracing edges q = ty, r = xz to ob-
tain H. With these edges V (C) induces
a minimally rigid graph B (isomorphic to
K5 minus an edge). See Figure 7.

The resulting graph H has 3n−4 edges.
It is a block-and-hole graph with a single
5-block, B, and no holes.

Theorem 4.4. H is 3-edge-rigid in R3.

Proof. We have to show that H ′ = H −
e − f is rigid for all pairs e, f of edges
of H. We have to consider several cases
depending on the locations of e and f with respect to C, its diagonals, and the two
bracing edges. We start with the case when the removal of e and f does not change
the block and hence we can directly use the characterization of (minimally) rigid block
and hole graphs.

Case 1: e and f are disjoint from the edges of the block B.

In this case H ′ is a block-and-hole graph with a 5-block B and either one 5-hole
(if e, f belong to the boundary of the same face) or two 4-holes. Since H is 5-
connected, a simple calculation shows that H ′ satisfies the girth inequalities. Hence
H ′ is (minimally) rigid by Theorem 4.3, as required.

Case 2: e or f is equal to q or r (i.e. we remove at least one of the two bracing edges).

By symmetry we may suppose that e = q. Then H − e is a 5-connected braced
triangulation, which is 2-edge rigid by Theorem 4.2. Therefore H ′ is rigid.

Case 3: e or f is equal to sx or sy (i.e. we remove at least one of the two diagonals).

By symmetry we may suppose that f = sy. Then G− f + r is also a triangulation,
and hence H − f is a 4-connected braced triangulation. Since H − f is 2-edge-rigid
by Theorem 4.2, it follows that H ′ is rigid. Thus we are done in Case 3.

In what follows it remains to consider the situation where e and f are different from
the diagonals and the bracing edges, and at least one of them, say e, is an edge of the
cycle C. To deal with these cases we shall mostly use local modifications within the
block and the adjacent faces and then apply various rigidity preserving operations in
order to show that H ′ is rigid. We shall need to refer to the neighbours of vertices
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4.1 3-edge rigidity 18

t, x, y, in the specific order they occur in the planar drawing. See Figure 7 for the
notation.

Case 4: e = st.

The edge xt belongs to two triangular faces in G, in which the third vertex is s and
a, respectively. First suppose f is disjoint from the boundaries of these two faces.
Then contract the edge xt in H ′ to obtain a 4-connected braced triangulation H̄. Let
w be the new vertex. The graph H̄ is 2-edge rigid by Theorem 4.2. Hence H̄ − f
is rigid. Now perform a suitable vertex splitting operation at w on edges aw,wy in
H̄ − f to obtain H ′. By Theorem 2.7 H ′ is rigid, as required.

Next suppose f is one of the edges ta, tx, xa (we have already dealt with the case
when f = sx is a diagonal). If f = ta then t has degree four in H ′. Consider
H ′ − t+ xa′′. This graph is a block-and-hole graph with one 4-block and one 4-hole.
It is 4-connected, and hence rigid by Theorem 4.3. Since we can recover H ′ by a 1-
extension operation on edge xa′′ from this graph, it follows that H ′ is rigid. A similar
argument works when f = tx.

It remains to consider the subcase when f = xa. Recall that t, x, y, and z are all
degree-five vertices and refer to Figure 7 for the labels of the vertices around t, x, y.

Let G′′ be obtained from G by deleting the vertices t, x and adding the edges
sa′, a′y, hz. Observe that G′′ is a block-and-hole graph with a single 4-block (on
h, y, z, z′) and a single 4-hole (on h, y, a′, a). We claim that each cycle separating
the block from the hole has length at least four. Indeed, otherwise – since the block
and the hole share the vertices h, y – a potential separating three-cycle would include
a vertex which is a common neighbour of h and y in G′′. This vertex can be s
or a′. However, this would mean that {y, s, h} or {a′, t, x, h} are separators in G,
contradicting 5-connectivity. This verifies the claim. Now Theorem 4.3 implies that
G′′ is rigid.

In order to obtain H ′ from G′′ we first apply a triangle based 2-extension to G′′

to create the graph G′, where the triangle is on vertices h, y, z, and the two removed
edges are hz, sa′. We call the new vertex x. Since this operation preserves rigidity,
G′ is rigid. Next we perform a vertex splitting in G′ at a′, on edges aa′, a′a′′. We call
the new vertex t and perform the split in such a way that t gets connected to x and
y (in addition to a, a′, a′′). The resulting graph is isomorphic to H ′, and it is rigid by
Theorem 2.7, as required.

Case 5: e = tx.

First we consider the subcases when f is also on the cycle. By Case 4. and symmetry
we may assume that f is different from st, sz. Thus we have two subcases of this type.

If f = yz then contract xy in H ′ to obtain the graph Ḡ. Denote the new vertex
by w. Notice that Ḡ is a triangulation, so it is rigid by Theorem 4.1. By applying
a suitable vertex splitting operation at w in Ḡ we obtain H ′. Hence H ′ is rigid by
Theorem 2.7.

If f = xy then contract zy to obtain a 4-connected braced triangulation H̄. Denote
the new vertex by w. Theorem 4.2 implies that H̄ is 2-edge rigid. Hence H̄ − e is
rigid. By applying a suitable vertex splitting operation at w in H̄−e on edges sw,wz′

we obtain H ′. Thus H ′ is rigid by Theorem 2.7.
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Next we deal with the subcase when f is not on the cycle. Suppose that f is different
from ta′′, sa′′. Contract st in H ′ to obtain a 4-connected braced triangulation H̄, in
which the new vertex is w. Since H̄ is 2-rigid by Theorem 4.2, it follows that H̄ − f
is rigid. Then a suitable vertex splitting operation at w can be used to obtain H ′.
Thus H ′ is rigid by Theorem 2.7.

It remains to consider the subcases when the previous argument does not work:
when f and st belong to the same triangle in H − e. Let us suppose f = ta′′. Then
the graph H ′− t+ a′s is a 4-connected block-and-hole graph with one 4-hole and one
4-block. Thus it is rigid by Theorem 4.3. From this graph we can regain H ′ by a
1-extension operation, showing that H ′ is rigid.

Now suppose f = sa′′. Contract the edge tx in H to obtain a 4-connected braced
triangulation H̄. It is 2-rigid by Theorem 4.2, so H̄−sa′′ is rigid. We can then obtain
H ′ by a suitable extended vertex splitting operation, which shows that H ′ is rigid.

Case 6: e = xy.

By Cases 4., 5. and by symmetry we may assume that f is not on the cycle.
Suppose that f is different from xa, ta.

Then contract tx in H to obtain a 4-connected braced triangulation H̄. The graph
H̄ is 2-rigid by Theorem 4.2. Hence H̄ − f is rigid. We can then obtain H ′ by a
suitable vertex splitting operation, showing that H ′ is rigid.

It remains to consider the subcases when the previous argument does not work:
when f and tx belong to the same triangle in H − e. Let us suppose f = xa. Delete
vertex x and add an edge tz to obtain H̄. It is a 4-connected block-and-hole graph
with one 4-block and one 4-hole. Thus it is rigid. By applying a 1-extension to H̄ we
obtain H ′. Hence H ′ is rigid.

Finally suppose that f = ta. In this subcase we shall use the fact that in our
construction we can make sure that vertex h is also a degree-five vertex2.

Let H̄ = H − h + az′. Observe that H̄ is a block-and-hole graph, with one 5-hole
and two 4-blocks, which satisfies the girth inequalities (by the 5-connectivity of H).
Thus it is rigid. Then apply a triangle based 2-extension on the triangle a, h′, z′ and
edge xy so that the edges az′ and xy are removed. This operation creates H ′, and
hence H ′ is rigid. This completes the proof.

The lower bound 3n− 4 and the previous construction implies:

Theorem 4.5. Let G be a strongly minimally 3-edge rigid graph in R3 on n ≥ n0

vertices. Then G has 3n− 4 edges.

Theorem 4.4 corresponds to a special case of a much more general conjecture:
Whiteley [20] conjectured that every 5-connected braced triangulation with at least
two bracing edges is 3-edge-rigid.

We remark that a completely different construction gives rise to a family of 3-edge
rigid graphs with 3n − 1 edges: consider the cone of a strongly minimally 3-vertex

2To see this observe that we can apply a sequence of vertex splitting operations at the vertices
x, y, t, z, h, in this order, so that each operation preserves planarity, 5-connectivity, and makes the
degrees of each of these vertices equal to five.
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4.2 4-edge-rigidity 20

rigid graph G′ in R2. Such a graph G′ on n′ = n − 1 ≥ 8 vertices has 2n′ + 2 edges,
as it was shown in [15]. Hence the cone has 3n− 1 edges. The cone is 3-edge rigid in
R3 by Theorem 2.8(ii).

4.2 4-edge-rigidity

Before we show the solution to the 4-edge rigid version, we prove a result that we shall
use in other constructions, too. Let C3

n denote the cube of the cycle on n vertices.

Theorem 4.6. Let Q be a graph obtained from C3
n by deleting a vertex v and an edge

e, for some n ≥ 10. Then Q can be obtained from K5 by a sequence of 1-extensions
and edge additions.

Proof. We may suppose that e is disjoint from v. First suppose that v is not a vertex
of the shortest path between the end-vertices of e in Cn. By symmetry, and using
that n ≥ 10 we may assume that v = v1 and e = vivj with i < j and j ≥ 7. Consider
the set X of five vertices {vj−1, vj−2, . . . , vj−5} that precede vj on Cn. This set, which
must include vi, will be the vertex set of the base K5. The graph Q[X] is isomorphic
to K5 minus an edge.

Add this missing edge vj−1vj−5 to Q[X]. We call it a temporary edge. Then add the
vertices vj−6, vj−7, . . . v2, in this order, by a sequence of 1-extensions which involves
the temporary edge and two edges of Q. This can be done, and in the resulting graph
the temporary edge will connect vj−1 and v2, see Figure 8.
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Figure 8: Migrating the temporary edge toward v2.

Then add the vertices vj, vj+1, . . . , vn, in this order, by a sequence of 1-extensions
in such a way that when vj is added then the 1-extension deletes e = vivj and adds
another temporary edge from vj to v2. If j < n then the remaing 1-extensions are
performed in such a way that the temporary edge furthest from vn is involved, along
with two edges from Q. This way the end-vertices of the two temporary edges will
move towards vn and will end up in the positions vn−1v2 and vnv2. But these edges
exists in Q. Hence the resulting graph is a spanning subgraph of Q and our construc-
tion shows that Q can indeed be obtained from K5 by a sequence of 1-extensions and
edge additions.
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4.3 k-edge rigidity for k ≥ 5 21

Next suppose that v = v1 is a vertex of the shortest path between the end-vertices
of e in Cn. In this case it is easy to check that a similar proof works: we start with a
K5 on the five vertices {vn, vn−1, . . . , vn−4}, with one temporary edge, and then add
the remaining vertices by 1-extensions. By adding an appropriate second temporary
edge right before the last vertex, v2, is added, the construction can be completed so
that both temporary edges align with edges of Q.

Theorem 4.7. The graph C3
n is 4-edge rigid in R3 for n ≥ 10.

Proof. Let E, V denote the edge set and the vertex set of C3
n, respectively. By Lemma

2.1 it suffices to show that C3
n − F is rigid for all F ⊆ E with |F | = 3. Consider a

fixed triple F = {e, f, g}. Let f = uv.
The graph Q = C3

n − v − e can be obtained from K5 by a sequence of 1-extensions
and edge additions by Theorem 4.6. Thus Q is 2-edge rigid by Lemma 2.5, which
implies that Q− g is rigid. Since the degree of v in C3

n is equal to six, v is connected
to Q − g by at least three edges, which are different from f . Hence C3

n − F can be
obtained from Q− g by a 0-extension (and possibly some edge additions). Therefore
it is rigid, as required.

The degree lower bound (5) and Theorem 4.7 implies:

Theorem 4.8. The number of edges in a strongly minimally 4-edge rigid graph on
n ≥ 10 vertices in R3 is equal to 3n.

4.3 k-edge rigidity for k ≥ 5

Theorem 4.8 shows that the value k = 4 belongs to the upper range. The fact that
the upper range indeed exists and contains every k ≥ 5 follows from the lower bound
(5), Lemma 2.3, and Theorem 3.1.

Theorem 4.9. Let k ≥ 5 and n ≥ 12k + 9 be even. Then the number of edges in a
strongly minimally k-edge rigid graph on n vertices in R3 is equal to d (k+2)n

2
e.

5 Vertex and edge redundant global rigidity in R3

The extremal problems for k-vertex and k-edge global rigidity in R3 have not been
studied before, except for k = 1, where the tight bound (in both cases) is 3n− 5, as
we noted earlier. In this section we deduce the tight bounds for almost all cases.

5.1 Vertex redundant global rigidity

Lemma 2.12 implies that the number of edges in a 2-vertex globally rigid graph on n
vertices is at least 3n− 2. The next construction comes very close to this bound.

Theorem 5.1. Let e be an edge of C3
n, n ≥ 5. Then C3

n − e is 2-vertex globally rigid
in R3.
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5.2 Edge-redundant global rigidity 22

Proof. Let v be a vertex of C3
n and let Q = C3

n− e− v. The graph Q can be obtained
from K5 by a sequence of 1-extensions and edge additions by Theorem 4.6. Thus it
follows from Lemma 2.5 that Q is globally rigid. Since the choice of v is arbitrary,
the theorem follows.

As a corollary, we obtain:

Theorem 5.2. The number of edges in a strongly minimally 2-vertex globally rigid
graph on n vertices in R3 is at most 3n− 1.

Thus the tight bound for the size of a strongly minimally 2-vertex globally rigid
graph is either 3n − 2 or 3n − 1. We believe that the graph obtained from C3

n by
removing two disjoint edges is 2-vertex globally rigid in R3, and hence the tight bound
is 3n− 2. Even though our computational experiments suggest that these graphs are
indeed globally rigid, we have not yet found a proof.

Finding the tight bound for 3-vertex global rigidity remains an open problem, too.
A close-to-tight bound follows from our result on 4-vertex rigidity and Lemma 2.2.

Theorem 5.3. Let G be a strongly minimally 3-vertex globally rigid graph on n ≥ 28
vertices in R3. Then G has at most 3n+ 20 edges.

For k ≥ 4, however, we have the exact result. It follows from the degree lower
bound (6), Lemma 2.2, and Theorem 3.1.

Theorem 5.4. Let k ≥ 4 and n ≥ 12k + 9 be even. Then the number of edges
in a strongly minimally k-vertex globally rigid graph on n vertices in R3 is equal to
d (k+3)n

2
e.

5.2 Edge-redundant global rigidity

In the case of 2-edge global rigidity we have an almost tight bound. Let C2
n denote

the square of a cycle on n vertices.

Theorem 5.5. Let Hn be the cone of C2
n, n ≥ 5. Then Hn is 2-edge globally rigid in

R3.

Proof. It is known that C2
n is 2-vertex globally rigid in R2 for n ≥ 5, see [18]. The

theorem follows from Lemma 2.2.

The number of edges in the cone of the square of a cycle on n vertices in total is
3n− 3. Therefore we have the following upper bound.

Theorem 5.6. The number of edges in a strongly minimally 2-edge globally rigid
graph on n ≥ 5 vertices in R3 is at most 3n− 3.

By (8) the number of edges in a 2-edge globally rigid graph on n vertices is at least
3n−4. Thus the tight bound for the size of a strongly minimally 2-edge globally rigid
graph is either 3n− 4 or 3n− 3.
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Determining the best possible bound remains an open question. We conjecture
that the 3n− 4 is the right number. We note that it is conjectured in [11] that every
5-connected braced triangulation on n vertices with at least 3n − 4 edges is 2-edge
globally rigid in R3. The truth of this conjecture would imply that 3n − 4 is indeed
tight.

For k ≥ 3 we can deduce the exact bound. In the case of 3-edge global rigidity we
have the following construction.

Theorem 5.7. The graph C3
n, for n ≥ 6, is 3-edge globally rigid in R3.

Proof. Let E, V denote the edge set and the vertex set of C3
n, respectively. By Lemma

2.1 it suffices to show that C3
n − F is globally rigid for all F ⊆ E with |F | = 2. We

shall prove that C3
n − F is in fact 2-vertex rigid for all F ⊆ E with |F | = 2. This

implies that it is globally rigid by Lemma 2.2.
Consider a fixed pair F = {e, f} of edges and a vertex v. The graph Q = C3

n−v−e
can be obtained from K5 by a sequence of 1-extensions and edge additions by Theorem
4.6. Thus Gn is 2-edge rigid by Lemma 2.5(ii), which implies that Q−f = C3

n−F −v
is rigid, as claimed.

By comparing Theorem 5.7 and the lower bound (6), we have:

Theorem 5.8. The number of edges in a strongly minimally 3-edge globally rigid
graph on n ≥ 6 vertices in R3 is equal to 3n.

For k ≥ 4 Theorem 5.4 and Lemma 2.3 imply the following bound.

Theorem 5.9. Let k ≥ 4 and n ≥ 12k + 9 be even. Then the number of edges in a
strongly minimally k-edge globally rigid graph on n vertices in R3 is equal to d (k+3)n

2
e.

6 One more result

In this section we consider our extremal problem for k-vertex rigidity in the plane
in the case when k ≥ 5 is odd. A solution to this problem was given in [9], where
strongly minimally k-vertex rigid graphs on n vertices in R2 were constructed for every
(sufficiently large) odd n, for every odd k ≥ 5. Here we give a different construction,
which works for n even, complementing the result of [9]. It also gives an affirmative
answer to a conjecture from [13].

We shall need the next lemma, already used in [9].

Lemma 6.1. Let G1 and G2 be two disjoint rigid graphs in R2 and let F = {e, f, g}
be a set of three edges connecting G1 to G2. If e and f are disjoint, then G1 ∪G2 ∪F
is rigid in R2.

We shall also use the following tight bound on the vertex redundancy of powers of
cycles in the plane3.

3We studied the 3-dimensional case and verified the corresponding tight bound: for k ≥ 3 and
n ≥ 6k − 10 we have R3

v(Ck
n) = 2k − 3. We omit the details.
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Lemma 6.2. [9] Let k ≥ 2 and n ≥ max{2k + 2, 4k − 5}. Then

R2
v(C

k
n) = 2k − 2.

Let T k
n be the graph obtained from Cn by adding all edges vu for which the distance

from v to u in Cn is an even integer less than or equal to 2k. Note that T k
n is (2k+ 2)-

regular if n ≥ 4k + 2.

Theorem 6.3. Let k ≥ 2 and let n ≥ 4k + 6 be even. Then

R2
v(T

k
n ) = 2k + 1.

Proof. First observe that T k
n can be obtained by taking two disjoint copies of Ck

n
2

(spanned by the vertices with odd, resp. even indices in Cn) and connecting them
by n edges (the edge set of Cn). The connecting edges can be partitioned into two
matchings. See Figure 9. The two copies of Ck

n
2

will be denoted by G1 and G2. Let S

be a vertex set with |S| = 2k. Let Si = Gi∩S, i = 1, 2. We have to show that T k
n −S

is rigid in R2.

Figure 9: Two drawings of the graph T 3
16. Even and odd vertices are denoted by

empty and filled circles, respectively, on the left. The corresponding partition into
two C3

8 ’s is shown on the right, with lighter lines for the matching edges.

Case 1: k ≥ 3.

First suppose that |V (Gi) ∩ S| ≤ 2k − 3 for i = 1, 2. Then Gi − S is rigid for
i = 1, 2, by Lemma 6.2. Since n ≥ 4k + 6, there exists a set F of three disjoint edges
between G1 − S and G2 − S. By Lemma 6.1 this implies that (G1 ∪ G2 ∪ F ) − S is
rigid. Since this graph is a spanning subgraph of T k

n − S, it follows that T k
n − S is

rigid, as required.
Next suppose that S contains at least 2k − 2 vertices from, say, G1. Since |S2| ≤ 2

and k ≥ 3, Lemma 6.2 implies that G2 − S2 is rigid. Thus if G1 − S1 is also rigid, we
can apply the argument of the previous paragraph to deduce that T k

n − S is rigid. So
we may assume that G1 − S1 is not rigid.

Since |S2| ≤ 2 and the edge set connecting G1 and G2 is a 2-regular bipartite
graph, there are at most 2|S2| ≤ 4 vertices in G1 − S1 with less than two neighbours
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in G2 − S2. Let Q be this set of vertices. Since G2 − S2 is rigid, we can attach all
vertices in G1−S1−Q to G2−S2 by 0-extensions, using edges of T k

n −S (these edges
belong to the underlying cycle Cn). Let the resulting rigid subgraph of T k

n − S be
called G.

It remains to add the vertices of Q to G, preserving rigidity. If S2 = ∅ then Q = ∅
and there is nothing to prove. If |S2| = 1 then |S1| = 2k − 1, |Q| = 2, and each
vertex is Q has a neighbour in G2 − S2. Since G2 is 2k-regular, this implies that the
vertices of Q can be added by 0-extensions, using edges of T k

n − S. The final subcase
to consider is when |S2| = 2, |S1| = 2k − 2, and |Q| ∈ {3, 4}. If |Q| = 3 then the
vertices of S2 are consecutive in the cycle underlying G2 and the vertices of Q, call
them a, b, c, are consecutive in the cycle underlying G1. Now a and c have at least
one neighbour in G2 − S and at least one of them has a neighbour in G1 − S, for
otherwise the k vertices preceding a and the k vertices following c are all in S1, which
is impossible as |S1| = 2k − 2 and n ≥ 2k + 4. Hence we can add one of them, say a,
by a 0-extension. Then we can add c and b, in this order, by two more 0-extensions.
This completes the argument in this subcase.

If |Q| = 4 then each vertex in Q has a neighbour in G2 − S2. Furthermore, Q
consists of two pairs of consecutive vertices in the cycle underlying G1. A proof
similar to that of the previous subcase shows that we can add the vertices of Q to G
by four 0-extensions.

Case 2: k = 2.

Now |S| = 4, and G1, G2 are isomorphic to the square of a cycle. We may assume
that |S2| ≤ |S1|. If G2 − S2 is rigid then the proof of Case 1 works without any
changes. So we may assume that |S1| = |S2| = 2 and Gi − Si is non-rigid for i = 1, 2.
It follows that Si is a non-adjacent pair of vertices in the cycle underlying Gi, i = 1, 2.

Let us consider H := T 2
n − S and the cycle Cn underlying T 2

n . Recall that we have
added the edges of length 2 and 4 to Cn to obtain T 2

n . By our choice of n ≥ 4k+6 = 14,
there exists an interval I of size at least 3 in H. We may assume that I is the largest
interval. It is easy to see that H[I] is rigid. By removing the vertices of S the cycle
is split into two, three, or four intervals. One of them is I. Since the vertices of
Si, i = 1, 2, are non-adjacent on the cycle of Gi, each interval contains at least two
vertices. If we have only two intervals then S consists of two pairs of consecutive
vertices of Cn. Then four edges of T 2

n connect the two intervals and hence their union
induces a rigid spanning subgraph of H by Lemma 6.1. So T 2

n−S is rigid, as required.
It remains to consider the cases when we have three or four intervals.

First suppose that we have three intervals. Then we have a subset S ′ ⊂ S which
consists of two consecutive vertices of Cn. We shall prove that the vertices of H − I
can be added to I by a sequence of extensions, using edges of H. If S ′ neighbors I
and |I| ≥ 3 then we add the vertices cyclically, away from I, via 0-extensions, starting
at the opposite end of I. In the case when |I| = 2 we need 1-extensions, too. If S ′

does not neighbor I, in each of the other two intervals, we add the vertices cyclically,
away from I, via 0-extensions. It is easy to see that it is indeed possible to perform
these additions in T 2

n , as claimed.
Finally, suppose that we have four intervals. As in the previous case, we add the
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vertices in the intervals that neighbor I cyclically, away from I, via 0-extensions.
Since each interval has size at least two, we can use Lemma 6.1 to conclude that the
fourth interval can also be added preserving rigidity. It follows that H is rigid. This
completes the proof.

Since T k
n is a (2k + 2)-regular (2k + 1)-vertex rigid graph in R2, it is strongly

minimally (2k+1)-vertex rigid (assuming n is even). The special case of this corollary
for k = 2 was conjectured in [13, Conjecture 3].

7 Concluding remarks

In this paper we have determined the size of the strongly minimally k-vertex and
k-edge (globally) rigid graphs in R3 on n vertices for all k (and n large enough) and
for each of the four versions with the exception of four special cases. In these special
cases we obtained close-to-tight bounds. See Table 1. We conjecture that ε2 = ε4 = 0,
that is, our lower bounds are in fact tight in these two special cases as well.

Our results demonstrated that in each of the four versions of the 3-dimensional
problem there is indeed a bipartition into lower and upper ranges: if k is in the upper
range, the extremal value is given by the degree lower bound (the upper range), while
for values in the lower range the tight bounds differ by a constant. Table 1 shows
that upper range starts at k = 5 for vertex and edge rigidity, and at k = 4 for vertex
and edge global rigidity. We conjecture that the lower and upper ranges (which are
known to exist in Rd for d = 1, 2) also exist for all d ≥ 4, with threshold values d+ 2
and d+ 1, following the pattern of the cases d = 2, 3.

Our extremal problems remain open for d ≥ 4, k ≥ 3.
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Appendix

Theorem 8.1. For every n ≥ 44, there exists a graph on 3n + 20 vertices which is
4-vertex rigid in R3.

Proof. (Sketch) The graph G = (V,E) on n ≥ 44 vertices is obtained from Cn by
adding all edges of length 3 and 7, as well as another 20 edges in the following way.
Pick four pairwise disjoint consecutive subsets of vertices (intervals) V1, V2, V3, V4 of G
along the cycle with |Vi| = 7, 1 ≤ i ≤ 4, such that each pair of these sets is separated
by at least four vertices along the cycle. Then add all edges of length 2 within Vi,
1 ≤ i ≤ 4. Note that G has 3n + 20 edges and G[Vi] is a (minimally) rigid subgraph
for 1 ≤ i ≤ 4.

Let S ⊆ V with |S| = 3. It suffices to show that H = G[V − S] is rigid in R3.
We may assume, without loss of generality, that there are no vertices of S in V1 and
between V1 and V2. Thus H[V1] is a rigid subgraph of H on 7 vertices. Each vertex is
incident with edges of length 1, 3, and 7 in both directions along the cycle. Thus we
can attach vertices to each side of this subgraph along the cycle by 0-extensions until
we encounter an element of S in both directions. Denote these vertices of S by s1 and
s2, and denote our current rigid substructure by J . Note that J contains at least 11
vertices. It remains to attach the vertices between s1 and s2, excluding s3, the third
vertex of S, which lies somewhere among them. We will refer to the set of vertices
between si and s3 as Ii, i = 1, 2. We may suppose that |I1| ≥ |I2|. Finally, denote
the vertices in I1 counting outward from J by v1, v2, . . . and those in S2 by u1, u2, . . . .
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We shall use a sequence of extensions to attach the remaining vertices. We consider
the case when both intervals are long enough.

Case 1: |I1| ≥ 11, |I2| ≥ 7.

There are 3 vertices in I1 as well as 3 vertices in I2 which cannot be attached by
0-extensions as one of the edges (of length 1, 3, or 7) connecting back will be missing.
These are v1, v3, v7, u1, u3, u7. For these 6 vertices we will use 6 temporary edges
which do not appear in H when we attach them. Then, when we add the subsequent
vertices in I1 and I2 by 1-extensions, we shall make sure that these 6 temporary edges
move towards s3 and finally they will align with the 6 edges of length 7 that connect
I1 to I2 (across s3). As these edges are edges of H, the final rigid subgraph will be a
spanning subgraph of H, as required.

First we show that we can compensate the 3 missing edges in I1 on the first 11
vertices by adding temporary edges back to J . The following claim can be verified by
using extensions and a careful case analysis. We omit the proof.

Claim 8.2. Let K = H[J ∪ {v1, v2, ..., v11}] and let T be the five vertices of J closest
to s2. Pick three vertices vx, vy, vz with 5 ≤ x < y < z ≤ 11 and pick three vertices
a, b, c from T . Let e, f, g be three disjoint edges connecting vx, vy, vz to a, b, c. Then
K + {e, f, g} is rigid in R3.

To complete the proof of Case 1 we shall argue that a spanning subgraph of H
can be reduced to a rigid structure decribed in Claim 8.2 by the reverse operations
of 0- and 1-extensions. Consider the spanning subgraph H ′ of H which is obtained
from H by removing the edges of length 3 across s3 (thus keeping only the 6 edges of
length 7 – call them cross edges – between I1 and I2). First reduce the vertices of I2,
following the cyclic ordering, starting from the vertex next to s3, so that whenever
a degree-four vertex u is removed, the incident cross edge ux is replaced by an edge
vx, where v is the vertex at distance 7 from u (it may happen that v is already in J).
Vertices of degree three are simply deleted. When this proceduce ends, three cross
edges disappear and the other three will be replaced by three edges leading to one of
the five vertices of J closest to s2. Next reduce the vertices of I1 between s3 and v11
in a similar fashion. The resulting graph will satisfy the conditions of Claim 8.2 and
hence it is rigid. Since 0- and 1-extensions preserve rigidity, it follows that H ′ (and
hence H) is rigid, as required.

In the remaining cases we can use a similar proof strategy, but in some cases we
may need edges of length 3 across s3 in order to verify rigidity. We omit this case
analysis.
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