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A novel approach to graph isomorphism

Alpár Jüttner? and Péter Madarasi?

Abstract

This paper presents the concept of walk-labeling that can be used to design
polynomial algorithm for solving the graph isomorphism problem for various
graph classes. For example, all non-cospectral graph pairs can be distinguished
by the proposed combinatorial method. Furthermore, even non-isomorphic co-
spectral graphs might be distinguished assuming certain properties of their
eigenspaces.

The concept of k-strong walk-labeling is a refinement of the aforementioned
labeling, which has both theoretical and practical applications. Its applications
include the generation of graph fingerprints, which uniquely identify all the
graphs in the considered databases – including all strongly regular graphs on at
most 64 nodes and all graphs on at most 12 nodes. They provably identify all
trees and 3-connected planar graphs up to isomorphism, which – as a byproduct
– gives a new isomorphism algorithm for both graph classes. The practical
importance of this fingerprint lies in significantly speeding up searching in graph
databases and graph matching algorithms, which are commonly required in
biological and chemical applications.

Keywords: graph isomorphism, graph fingerprint, graph hash, searching in
graph databases, strongly regular graphs, isomorphism invariant, planar graph

1 Introduction

The graph isomorphism problem is one of the few natural problems in NP that are
neither known to be in P nor NP-Complete. At the same time, polynomial-time
isomorphism algorithms have been developed for various graph classes, like trees and
planar graphs [1], bounded valence graphs [2], interval graphs [3] or permutation
graphs [4]. Furthermore, an FPT algorithm has recently been presented for the colored
hypergraph isomorphism problem [5]. The most efficient practical graph isomorphism
algorithms include Nauty [6], VF2 [7] and its variants [8].

Many applications require more than just verifying if two given graphs are isomor-
phic — in most cases an isomorphic copy of a given graph G is to be found in a large
graph database. Instead of solving the graph isomorphism problem between G and
each graph in the database, one might generate so-called fingerprints for all graphs s.t.
if two fingerprints are different, then the corresponding graphs can not be isomorphic.
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Section 1. Introduction 2

After this preprocessing step, one can omit each graph having different fingerprint
from that of G.

Graph fingerprints are widely used, and multiple schemes have been proposed to
generate them. For example, graph fingerprints were generated by considering the
node labels of short paths in [9]. Another graph isomorphism invariant, the spectrum
has been theoretically studied in [10], [11] and combined with heat-kernels in [12]. The
number of graphs determined (i.e. distinguished from the non-isomorphic graphs) by
their spectrum was numerically examined up to 12 nodes in [13], and around 80% of
the graphs were found to be determined by their spectrum.

Recently, various algorithms have been developed based on discrete time quantum
walks (DTQW) or continuous time quantum walks (CTQW), aiming at distinguish-
ing non-isomorphic graph pairs. It is well known that neither standard single-particle
DTQW nor CTQW can distinguish Strongly regular graphs (SRG) of the same pa-
rameters, furthermore a constant-particle CTQW without interaction can distinguish
no SRG pairs of the same parameters, see [14] and [15]. However, the distinguishing
power of a variant of single-particle DTQW presented in [14] turned out to be larger
than that of a standard DTQW. Namely, it generates different signatures for certain
non-isomorphic SRG pairs of the same parameters, but there are still SRG pairs that
it fails to distinguish. In [16], CTQW were shown to be less powerful than DTQW
as far as the graph isomorphism is concerned. On the other hand, a state-of-the-art
quantum walk method using interacting bosons turned out to distinguish all SRG’s on
at most 64 nodes [17]. This compares to the easy-to-compute fingerprint introduced
in Section 3, which distinguishes all the mentioned SRG’s, in addition, it provides a
compact description of the graphs.

This work presents the concept of walk-labeling, which can be used to solve the
graph isomorphism problem in polynomial time under certain conditions — which
hold for a wide range of the graph pairs. All non-cospectral graph pairs are proved
to be distinguished by the proposed combinatorial method (without computing the
graph spectra). Furthermore, even if the graphs are cospectral and non-isomorphic,
various conditions are shown that ensure that the graphs are distinguished.

A refinement of the aforementioned labeling called k-strong walk-labeling is also in-
troduced. Its applications include speeding up any backtracking-based graph match-
ing algorithm, and a fingerprint generation method, which uniquely identifies all the
graphs in the considered graph databases — including all known strongly regular
graphs. Therefore, it is competitive with the state-of-the-art quantum walk algo-
rithms. In addition, it compresses all information about the graph to a short finger-
print. The fingerprint is a promising Co-NP characterisation candidate for the graph
isomorphism problem, since strongly regular graphs — which it manages to uniquely
identify on up to 64 nodes — are known as possibly the hardest instances of the graph
isomorphism problem.

The rest of the paper is structured as follows. Section 1.1 introduces the most
important notations. Section 2 defines the so called walk-labeling, and presents some
spectral-based result. A refinement of walk-labeling is introduced in Section 3, which
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1.1 Notation 3

is proved to identify trees and 3-connected planar graphs up to isomorphism.

1.1 Notation

As usual, sets are described in curly brackets, and multisets are described in curly
brackets followed by a superscript hash character. For example, {1, 2, 3} denotes the
set consisting of the numbers 1,2,3, and {1, 1, 2, 3}# denotes the multiset consisting
of numbers 1,1,2,3. Let N denote the non-negative integer numbers. For a positive
integer n, let [n] denote the set {i ∈ N : 1 ≤ i ≤ n}.

Throughout the thesis G = (V,E), G1 = (V1, E1) and G2 = (V2, E2) denote three
arbitrary loop-free undirected graphs with n > 1 nodes, where V, V1, V2 denotes the
node sets and E,E1, E2 the edge sets, respectively. For the sake of simplicity, the
node sets are assumed to be [n], that is V = V1 = V2 = [n]. The adjacency matrices
of these graphs are A,A1, A2 ∈ {0, 1}n×n, respectively. Let ΓG(i) denote the set of
the neighbors of node i in graph G.

Matrices A1 and A2 denote the adjacency matrices of G1 and G2, respectively.
Let λ1 ≥ λ2 ≥ .. ≥ λn and µ1 ≥ µ2 ≥ .. ≥ µn denote the corresponding eigen-
values. G1 and G2 are cospectral if the multisets of the eigenvalues of A1 and A2

are equal. Let U, V ∈ R
n×n orthogonal matrices (i.e. UTU = I and V TV = I) s.t.

A1U = U diag(λ1, λ2, .., λn) and A2V = V diag(µ1, µ2, .., µn). U and V are called the
eigenmatrices of G1 and G2, respectively. Let u1, u2, ..un and v1, v2, ..vn denote the
column vectors of U and V , respectively. Note that V denotes both the eigenmatrix
of G2 and the node set of G, but this will not cause ambiguity. Please note that uij
denotes the jth entry of eigenvector ui, i.e. it is the entry of U in the jth row and ith

column, where i, j ∈ [n]. For a matrix Q, let Q|k denote the first k columns of Q.
Finally, let δij denote the Kronecker delta.

2 Counting walks

Let `G : VG −→ N
n×N be s.t. `G(i)jl denotes the number of walks of length l between

node i and node j for l ≥ 0. In other words, column l of matrix `G(i) is Al−1ei, where
ei is the incidence vector of node i ∈ VG and l ≥ 1. The function `G will be referred
to as (infinite) walk-labeling.

Two matrices Q1 and Qw
2 are said to be permutation-equal if there exists a

permutation matrix P for which PQ1 = Q2. This equivalence relation is denoted by
Q1

p
= Q2.

Claim 2.1. If `(u) 6 p= `(v) for two nodes u ∈ V1 and v ∈ V2, then there is no
isomorphism between G1 and G2 that maps node u to node v.

The definition of walk-isomorphism follows, which plays an important role in Sec-
tion 2.2.

Definition 2.2. G1 and G2 are walk-isomorphic if the nodes can be relabeled s.t.
`G1(i)

p
= `G2(i) for each node i.
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2.1 Only short walks matter 4

Claim 2.3. If two graphs are isomorphic, then they are walk-isomorphic.

Later on, it will be shown in important special cases, that the reverse direction
holds as well.

2.1 Only short walks matter

The matrices that ` assigns to the nodes are infinite long, therefore there is no straight-
forward way of checking whether two such matrices are permutation-equal or not. In
what follows, it turns out that it is sufficient to consider the first n+ 1 columns of the
label matrices.

Definition 2.4. For given column vectors q0, q1, .. over a field, let span(q0, q1, ..) de-
note the linear subspace spanned by the column vectors q0, q1, ...

The following lemma will be useful in the proof of Theorem 2.6.

Lemma 2.5. For an arbitrary real square matrix M ∈ R
n×n and q0 ∈ R

n column
vector, span(q0, q1, q2, ..) = span(q0, q1, .., qn−1), where qi := M iq0 for all i ≥ 0.

Proof. By induction, one may show that if span(q0, q1, ..qi) = span(q0, q1, ..qi+1),
then span(q0, q1, ..qi) = span(q0, q1, q2, ..) for all i. Therefore, columns q0, q1, . . . , qn
generates span(q0, q1, q2, ..).

The following theorem shows that it is sufficient to consider the first few columns
of the labels, i.e. only the number of short walks matters. Recall that `G|k (i) denotes
the first k columns of matrix `G(i).

Theorem 2.6. For every graph pair G1, G2 with n nodes and for all i1 ∈ V1, i2 ∈ V2

`G1(i1)
p
= `G2(i2)⇐⇒ `G1|n+1 (i1)

p
= `G2|n+1 (i2).

Proof. Let Q1, Q2, Q
′
1 and Q′2 denote the matrices `G1(v1), `G2(v2), `G1|n+1 (v1) and

`G2|n+1 (v2), respectively. If Q1
p
= Q2, then, by definition, there exists a permutation

matrix P for which PQ1 = Q2. Clearly, PQ1 = Q2 ⇒ PQ′1 = Q′2. To show the
other direction, suppose that Q′1

p
= Q′2, and the columns of Q1 and Q2 are q0, q1, q2..

and q′0, q
′
1, q
′
2.., respectively. Let A1, A2 denote the adjacency matrices of G1 and G2,

respectively. Since Q′1
p
= Q′2, there exists a permutation matrix P s.t. PQ′1 = Q′2,

thus it is sufficient to prove that Pqi = q′i hols for all i ≥ n+ 1.
By induction, suppose that k < i =⇒ Pqk = q′k for all k. The existence of coefficients

α0, ..αn−1 s.t. qi−1 =
n−1∑
j=0

αjqj and q′i−1 =
n−1∑
j=0

αjq
′
j is an immediate consequence of

Lemma 2.5. Therefore,

Pqi = PA1qi−1 = P

n−1∑
j=0

αjA1qj =
n−1∑
j=0

αjPqj+1 =
n−1∑
j=0

αjq
′
j+1 =

n−1∑
j=0

αjA2q
′
j = A2q

′
i−1 = q′i

(1)
holds for all i ≥ n+ 1, which had to be shown.
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2.2 Spectral results 5

The following example shows that the previous theorem is tight in the sense that
it is not always sufficient to consider the first n columns of the walk labels.

Example 2.7. Let Pn denote the path of n nodes, and let P ′n denote the path of n
nodes with a loop on one of its endpoints. To distinguish two loop-free endpoints of
the two graphs, indeed n+ 1 columns are necessary, since their labels do not turn out
to be different earlier.

From now on, `G might refer to `G|n+1 or the infinite walk-labeling. Note that
the walk label `G|n+1 (i) of a given node i can be computed in O(nm) operations
using a simple dynamic programming method. Furthermore, one might prove that the
occurring numbers consist of polynomial many bits in the size of the graph. Therefore
it takes O(n2m + n3log(n)) steps to decide whether two graphs are walk-isomorphic
by sorting the labels of both graphs.

2.2 Spectral results

Simple observations follow for later reference.

Claim 2.8. If `G1(i)
p
= `G2(i

′), then the number of closed walks of length l starting
from i ∈ V1 and i′ ∈ V2 are the same for all l ≥ 0.

Proof. By definition, there exists a permutation matrix P s.t. P`G1(i) = `G2(i
′).

Notice that the first column of `G1(i) and `G2(i
′) enforces that P maps the ith row of

`G1(i) to the i′th row of `G2(i
′), which means that the number of closed walks from

i ∈ V1 and i′ ∈ V2 are the same for all l ≥ 0.

Lemma 2.9. For all i, j ∈ [n] and for all l ≥ 1, (Al)ij =
n∑
k=1

ukiukjλ
l
k holds, where

λ1, λ2, ..λn are the eigenvalues of G. The right-hand side of this equation will be
referred to as the eigen decomposition.

Proof. U ∈ R
n×n is an orthonormal matrix s.t. AU = U diag(λ1, λ2, ..λn). Clearly,

U−1AlU = diag(λl1, λ
l
2, ..λ

l
n) holds, hence Al = U diag(λl1, λ

l
2, ..λ

l
n)U−1. Therefore,

(Al)ij =
n∑
k=1

ukiukjλ
l
k for any node pair i, j ∈ [n].

The following observation is an immediate consequence of Lemma 2.9.

Corollary 2.10. For all i, j ∈ [n] and l ≥ 1, there exist βij1 , β
ij
2 , ..β

ij
p ∈ R s.t.

(Al)ij =
p∑

m=1

βijmλ̃
l
m, where λ̃1, λ̃2, ..λ̃p are the distinct non-zero eigenvalues of G. The

the right-hand side of this equation will be referred to as the aggregated eigen de-
composition.

Proof. By Lemma 2.9, (Al)ij =
n∑
k=1

ukiukjλ
l
k for l ≥ 1 and i, j ∈ [n]. Clearly, βijm :=∑

k:λk=λ̃m

ukiukj is a proper choice, where i, j ∈ [n] and m ∈ [p].
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2.2 Spectral results 6

The following theorem shows that non-cospectral graphs are not walk-isomorphic.

Theorem 2.11. If G1 and G2 are walk-isomorphic, then the spectra of G1 and G2

are the same.

Proof. The proof consists of two steps.
Step 1: We prove that the set of non-zero eigenvalues of G1 and G2 are the same.

Lemma 2.12. Coefficient βiik in the aggregated eigen decomposition is zero if it cor-
responds to a non-zero eigenvalue of exactly one of G1 and G2 for all i, k ∈ [n].

Proof. Let λ̃1, λ̃2, .., λ̃r, θ̃r+1, ..θ̃p and λ̃1, λ̃2, .., λ̃r, µ̃r+1, ..µ̃q denote all the distinct non-
zero eigenvalues of G1 and G2, respectively, where λ̃1, λ̃2, .., λ̃r are the mutual non-zero
eigenvalues of the two graphs and θ̃r+1, ..θ̃p, µ̃r+1, ..µ̃q are pairwise distinct.

For the sake of simplicity, suppose that the nodes are reindexed s.t. the identity
mapping is a walk-isomorphism, i.e. `G1(i)

p
= `G2(i) for all node i.

By Corollary 2.10, there exist coefficients α1, α2, .., αp, β1, β2, ..βq for any i, j s.t.

(Al1)ij =
r∑

k=1

αkλ̃
l
k +

p∑
k=r+1

αkθ̃
l
k (2)

and

(Al2)ij =
r∑

k=1

βkλ̃
l
k +

q∑
k=r+1

βkµ̃
l
k (3)

for all l ≥ 1.
The two graphs being walk-isomorphic, one gets that

r∑
k=1

αkλ̃
l
k +

p∑
k=r+1

αkθ̃
l
k = (Al1)ii = (Al2)ii =

r∑
k=1

βkλ̃
l
k +

q∑
k=r+1

βkµ̃
l
k (4)

holds for all i ∈ [n] and l ≥ 1, where the second equation follows from Claim 2.8.
Subtracting the right-hand side, one gains the the following equations from (4)

r∑
k=1

(αk − βk)λ̃lk +

p∑
k=r+1

αkθ̃
l
k −

q∑
k=r+1

βkµ̃
l
k = 0 (5)

for all l ≥ 1. Let m := p + q − r, and consider the following linear equations for
l ∈ [m].

r∑
k=1

xkλ̃
l
k +

p∑
k=r+1

xkθ̃
l
k +

q∑
k=r+1

xp+k−rµ̃
l
k = 0, (6)

where

xs :=


αs − βs, if 1 ≤ s ≤ r

αs, if r + 1 ≤ s ≤ p

−βr+s−p, if p+ 1 ≤ s ≤ p+ q − r,
(7)
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2.2 Spectral results 7

for all s ∈ [m]. The matrix of this linear equation system is

M :=


λ̃1

1 . . . λ̃1
r θ̃1

r+1 . . . θ̃1
p µ̃1

r+1 . . . µ̃1
q

λ̃2
1 . . . λ̃2

r θ̃2
r+1 . . . θ̃2

p µ̃2
r+1 . . . µ̃2

q

λ̃3
1 . . . λ̃3

r θ̃3
r+1 . . . θ̃3

p µ̃3
r+1 . . . µ̃3

q
...

. . .
...

...
. . .

...
...

. . .
...

λ̃m1 . . . λ̃mr θ̃mr+1 . . . θ̃mp µ̃mr+1 . . . µ̃mq

 . (8)

Observe that M = M ′ diag(λ̃1
1, . . . , λ̃

1
r, θ̃

1
r+1, . . . , θ̃

1
p, µ̃

1
r+1, . . . , µ̃

1
q), where M ′ denotes

the following Vandermonde matrix.

M ′ :=


1 . . . 1 1 . . . 1 1 . . . 1

λ̃1
1 . . . λ̃1

r θ̃1
r+1 . . . θ̃1

p µ̃1
r+1 . . . µ̃1

q

λ̃2
1 . . . λ̃2

r θ̃2
r+1 . . . θ̃2

p µ̃2
r+1 . . . µ̃2

q
...

. . .
...

...
. . .

...
...

. . .
...

λ̃m1 . . . λ̃mr θ̃mr+1 . . . θ̃mp µ̃mr+1 . . . µ̃mq

 (9)

Therefore det(M) = det(M ′)
r∏

k=1

λ̃k
p∏

k=r+1

θ̃k
q∏

k=r+1

µ̃k 6= 0, thus the only solution is

x ≡ 0, that is 
αs = βs, if 1 ≤ s ≤ r

αs = 0, if r + 1 ≤ s ≤ p

βr+s−p = 0, if p+ 1 ≤ s ≤ p+ q − r
(10)

follows for all s ∈ [m].

Let λ∗ 6= 0 denote an eigenvalue which corresponds to exactly one of the graphs,
say to G1. Next we argue that there exists a node i ∈ V1 s.t. λ∗ has non-zero co-
efficient in the aggregated eigen decomposition given by Corollary 2.10 for (Al1)ii –
contradicting Lemma 2.12. Let m̃ denote the unique index for which λ̃m̃ = λ∗. By
Corollary 2.10, the coefficient of λ̃m̃ in the case of the number of closed walks from
node i is βiim̃ :=

∑
k:λk=λ̃m̃

ukiuki. Let m be an index such that λm = λ̃m̃, and let i be
s.t. umiumi > 0 (there exists at least one index like this, since umum = 1). Observe
that βiim̃ ≥ umiumi > 0 holds, therefore node i meets the requirements, contradicting
Lemma 2.12.

Step 2: We show that the multiplicities of the eigenvalues are the same in G1 and
G2. It is sufficient to show that the multiplicities of the non-zero eigenvalues are the
same, because this implies that the multiplicities of zero are the same in G1 and G2.
Let τ

(k)
i denote the multiplicity of λ̃i in Gk (k = 1, 2), where λ̃1, .., λ̃p are the mutual

eigenvalues of G1 and G2.
As a consequence of Lemma 2.9, the sum of the numbers of closed walks of Gk of

length l is
p∑
j=1

τ
(k)
j λ̃lj, (l ≥ 1). Since G1 and G2 are walk-isomorphic, Claim 2.8 applies,

thus the sum of the numbers of closed walks of length l in the two graphs are the
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2.2 Spectral results 8

same for all l, i.e.
p∑
j=1

τ
(1)
j λ̃lj =

p∑
j=1

τ
(2)
j λ̃lj for all l ≥ 1. Subtracting the right-hand side

provides for all l ≥ 1 that

p∑
j=1

(τ
(1)
j − τ

(2)
j )λ̃lj = 0 (11)

Consider these equations for l ∈ [p], and let xj := τ
(1)
j −τ

(2)
j for all j ∈ [p]. Similarly

to step 1, the matrix of this equation system has non-zero determinant, thus the only
solution is x ≡ 0, i.e. τ

(1)
j = τ

(2)
j for all j ∈ [p]. Therefore each non-zero eigenvalue

has the same multiplicities in the two graphs, which implies that the multiplicities of
eigenvalue 0 is the same, as well. This means that the multisets of the eigenvalues are
indeed equal.

Theorem 2.13. Let G1 and G2 be cospectral with single eigenvalues. If one of the
eigenmatrices has a row which contains non-zero elements only, then the walk-isomor-
phism is equivalent to the graph isomorphism.

Proof. Clearly, it suffices to show that if G1 and G2 are walk-isomorphic, then they
are isomorphic.

It suffices to show a permutation matrix Π s.t. ΠA1ΠT = A2. Recall that U =
(u1, u2, .., un) and V = (v1, v2, .., vn) denote the eigenmatrices of G1 and G2, respec-
tively, i.e. A1 = Udiag(λ1, .., λn)UT and A2 = V diag(λ1, .., λn)V T . A permutation
matrix Π corresponds to an isomorphism if and only if ΠUdiag(λ1, .., λn)UTΠT =
V diag(λ1, .., λn)V T , which holds if and only if ΠU = V S for some matrix S =
diag(σ1, .., σn), where σi ∈ {−1, 1}. Therefore it is sufficient to show such matri-
ces Π and S.

Without loss of generality, assume that row i∗ of U consists of non-zero elements. By
the definition of walk-isomorphism, there is a permutation π s.t. (Al1)i∗j = (Al2)π(i∗)π(j),
thus uki∗ukj = vkπ(i∗)vkπ(j) for all j ∈ [n]. Clearly, row π(i∗) of V consists of non-zero
elements. Let S := diag(σ1, .., σn), where σk := sgn(uki∗) sgn(vkπ(i∗)) ∈ {−1, 1}, and

let Π =

{
1, if π(j) = i

0, otherwise
. The following claim completes the proof.

Claim 2.14. ΠU = V S

Proof. The values in position (j, k) of the left and the right side are ukπ−1(j) and σkvkj,
respectively. ∀j, k ∈ [n] : ukπ−1(j) = σkvkj ⇐⇒ ∀j, k ∈ [n] : ukj = σkvkπ(j) ⇐⇒ ∀j, k ∈
[n] : uki∗ukj = vkπ(i∗)vkπ(j), where the last equivalence holds because uki∗ = σkvkπ(i∗)

and σ2
k = 1, and indeed, π was chosen s.t. uki∗ukj = vkπ(i∗)vkπ(j) for all j, k ∈ [n].

Lemma 2.15. If G1 and G2 are walk-isomorphic graphs and the nodes of G2 are
reindexed s.t. `G1(i)

p
= `G2(i) for all i ∈ [n], then for any single eigenvalue, the

corresponding normalized eigenvectors in the two graphs are element-wise the same
up to sign.
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2.2 Spectral results 9

Proof. By definition, `G1|n+1 (i)
p
= `G2 |n+1 (i) implies that

n∑
k=1

uikuikλ
l
k = (Al1)ii = (Al2)ii =

n∑
k=1

vikvikλ
l
k, (12)

thus ∀i ∈ [n] : uikuik = vikvik. That is, |uik| = |vik| for all i, k ∈ [n]. Notice that this
proof works even if 0 is an eigenvalue.

Theorem 2.16. Let G1 and G2 be cospectral with single eigenvalues. If {uik : k ∈
[n]}# 6= {−uik : k ∈ [n]}# and {vik : k ∈ [n]}# 6= {−vik : k ∈ [n]}# for all i ∈ [n],
then the walk-isomorphism is equivalent to the graph isomorphism.

Proof. If G1 and G2 are isomorphic, then they are clearly walk-isomorphic. On the
other hand, let w1, w2 ∈ Rn be arbitrary vectors, s.t. {w1k : k ∈ [n]}# 6= {w2k : k ∈
[n]}#. Let w1

L

� w2 mean that after non-increasingly ordering their coordinates, w1

is lexicographically strictly larger than w2.

Without loss of generality, it can be assumed that ui
L

� −ui and vi
L

� −vi holds
for all i ∈ [n]. Assume that there is a walk-isomorphism realized by π : V1 −→ V2.
By Lemma 2.15, |uki| = |vkπ(i)| holds for all k ∈ [n] and i ∈ [n]. By contradiction,
suppose that there is an index k∗ and i∗ s.t. uk∗i∗ 6= vk∗π(i∗). Clearly, uk∗i∗ = −vk∗π(i∗).
Let π∗ denote the bijection of i∗, i.e. uki∗ukj = vkπ∗(i∗)vkπ∗(j) holds for all j, k ∈ [n],
even if 0 is an eigenvalue. π∗ can be prescribed to satisfy π∗(i∗) = π(i∗). Thus
one gets that uk∗i∗uk∗j = vk∗π∗(i∗)vk∗π∗(j) for all j ∈ [n], which implies −uk∗ = πvk∗ .

But uk∗
L

� −uk∗ = π∗vk∗
L

� −vk∗ = π∗−1uk∗ . Therefore G1 and G2 are indeed
isomorphic.

Definition 2.17. A graph is friendly [18] if each of its eigenvalues has multiplicity
one and 1U has no zero coordinates, where U is the eigenmatrix of the graph.

Corollary 2.18. If G1 and G2 are friendly, then the walk-isomorphism is equivalent
to the graph isomorphism.

Proof. For all i ∈ [n] : 1ui 6= 0 and 1vi 6= 0 implies that {uik : k ∈ [n]}# 6= {−uik : k ∈
[n]}# and {vik : k ∈ [n]}# 6= {−vik : k ∈ [n]}#, thus Theorem 2.16 can be applied.

Theorem 2.19 (Perron-Frobenius). Let graph G be connected and have at least two
nodes. The largest eigenvalue λ1 of the adjacency matrix of G is positive, has multi-
plicity one, and λ1 ≥ |λ| for every eigenvalue λ. In addition, the eigenvector corre-
sponding to λ1 can be chosen strictly positive.

The positive normalized eigenvector corresponding to the largest positive eigenvalue
in Theorem 2.19 will be referred to as the Perron-Frobenius eigenvector of G. The
Perron-Frobenius eigenvector of a graph determines the invariant distribution with
respect to infinite random walks. Therefore, the following theorem states that if the
invariant distributions of two graphs are different, then they are not walk-isomorphic.
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Theorem 2.20. Let G1 and G2 be connected cospectral graphs on at least two nodes.
If the Perron-Frobenius eigenvectors of G1 and G2 are different, then G1 and G2 are
not walk-isomorphic.

Proof. Let λ1 denote the unique largest eigenvalue, and let u1, v1 denote the corre-
sponding Perron-Frobenius eigenvectors in G1 and G2, respectively. Theorem 2.19
implies u1 and v1 are strictly positive.

Clearly, λ1 > 0, since the sum of the eigenvalues is the number of closed walks of
length one, thus it is non-negative, therefore λ1 ≤ 0 would imply that each eigenvalue
is zero. It is easy to see that a graph having zero eigenvalues only must be the empty
graph, which contradicts the assumption of the theorem.

In any walk-isomorphism,
n∑
k=1

ukiukiλ
l
k =

n∑
k=1

vkivkiλ
l
k holds for all l ≥ 1 after rein-

dexing the nodes. With the multiplicity of λ1 being one, u1iu1i = v1iv1i holds for all
i ∈ [n]. Since both u1 and v1 are strictly positive, indeed u1 = v1.

3 Structure of walks

This section introduces a refined version of walk-labeling.

Notation 3.1. Let skG(i1, . . . , ik) be an n × N matrix whose position (j, l) describes
the structure of walks of length l between nodes {i1 . . . ik} and j. Formally, let

skG(i1, . . . , ik)il :=

(∅, {
k∑
q=1

qδiiq}), if l = 0

(skG(i1, . . . , ik)il−1, {skG(i1, . . . , ik)i′l−1 : i′ ∈ ΓG(i)}#), otherwise

(13)
for all j ∈ V and for all l ≥ 0.

Note that the first column of matrix skG(i1, . . . , ik) corresponds to walks of length
zero, therefore its index is zero. Column l will be denoted by skG(i1, . . . , ik)•l. Recall
that skG(i1, . . . , ik)

∣∣
q

denotes the first q columns of matrix skG(i1, . . . , ik), that is, it

describes the walks upto length q − 1.
Simple inductive proof shows that it suffices to consider the first n + 1 columns,

likewise in the case of walk-labeling.

Claim 3.2. For every graph pair G1, G2 and for any distinct i1, . . . , ik ∈ V1, j1, . . . , jk ∈
V2

skG1
(i1, . . . , ik)

p
= skG2

(j1, . . . , jk)⇐⇒ skG1
(i1, . . . , ik)

∣∣
n+1

p
= skG2

(j1, . . . , jk)
∣∣
n+1

,

where n = |V1| = |V2| and k ≥ 1 is arbitrary.

Observe that skG1
(i1, . . . , ik)

∣∣
n+1

p
= skG2

(j1, . . . , jk)
∣∣
n+1

if and only if skG1
(i1, . . . , ik)•n

p
=

skG2
(j1, . . . , jk)•n. From now on, skG(i1, . . . , ik) might refer to skG(i1, . . . , ik)

∣∣
n+1

, as well.
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Notation 3.3. For q = 1 . . . k, let skG(i1, . . . , ik−q) := {skG(i1, . . . , ik−q, i) : i ∈ V \
{i1, . . . , ik−q}}#.

The following two claims easily follow by definition.

Claim 3.4. For all k ≥ 1, if skG1
(i1) 6= skG2

(i2) for two nodes i1 ∈ V1 and i2 ∈ V2, then
there is no isomorphism between G1 and G2 that maps node i1 to node i2.

Claim 3.5. For all k ≥ 1 and any i1 ∈ V1 and i2 ∈ V2, skG1
(i1) 6= skG2

(i2) =⇒
sk+1
G1

(i1) 6= sk+1
G2

(i2).

Definition 3.6. G1 and G2 are k-strongly walk-isomorphic if skG1
= skG2

.

Remark 3.7. For any given k, one can verify in polynomial time whether two graphs
are k-strongly walk-isomorphic or not.

Claim 3.8. If G1 and G2 are 1-strongly walk-isomorphic, then they are walk-isomorphic.

The previous claim implies that if two graphs can be distinguished by walk-iso-
morphism, then they can be distinguished by k-strong walk isomorphism (k ≥ 1).

Example 2.7 shows that the previous claim is tight in the sense that considering
the first n columns would not be sufficient. Note that the size of skG(i1, . . . , ik)jl may
be exponentially large in n. Practically, one may address this issue by hashing the
occurring data using SHA512 – this also enables the generation of graph fingerprints
that we found to distinguish all strongly regular graphs on at most 64 nodes considering
skG, where k ≥ 2. The hash function also identifies all graphs on at most 12 nodes for
k ≥ 2. In fact, it remains open whether there exists any non-isomorphic graph pairs
that it fails to distinguish (assuming that there are no hash collisions, i.e. a perfect
hash function). Note that it is possible to give a perfect hash function for this specific
problem by building a dictionary dynamically throughout the labelling process.

The rest of this section investigates the distinguishing power of the above notion
on trees and planar graphs.

Theorem 3.9. The 1-strong walk-isomorphism is equivalent to the graph isomorphism
on trees.

Proof. Let sG denote s1
G in this proof. Given two strongly walk-isomorphic trees

G1 = (V,E1) and G2 = (V,E2), we show that they are isomorphic. For an edge
(r, p) ∈ Ei, let Ti(r, p) = (Vi(r, p), Ei(r, p)) denote the subtree of Gi obtained as the
connected component of (V,Ei \ {(r, p)}) containing node r.

By induction, we prove that for any edges (r1, p1) ∈ E1 and (r2, p2) ∈ E2 if
sG1(r1)|k+1

p
= sG2(r2)|k+1 and sG1(p1)|k+1

p
= sG2(p2)|k+1 for k = |V1(r1, p1)|, then

T1(r1, p1) and T2(r2, p2) are isomorphic. Clearly, if k = 1 — i.e. r1 is a leaf node in
G1 — then r2 must also be a leaf node in G2.

Otherwise, one gets that {sG1(i)|k : i ∈ ΓG1(r1)}# = {sG2(i)|k : i ∈ ΓG2(r2)}#.
Thus r1 and r2 have the same number of neighbors and there is a one-to-one mapping
φ : ΓG1(r1) −→ ΓG2(r2) so that v and φ(v) have same label up to the first k columns for
each v ∈ ΓG1(r1). Therefore, from the induction hypothesis, T1(v, r1) and T2(φ(v), r2)
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are isomorphic subtrees for all v ∈ ΓG1(r1) \ p1. The isomorphism of T1(r1, p1) and
T2(r2, p2) follows from this immediately.

In order to complete the proof of the theorem, let us choose an arbitrary leaf node
r1 ∈ V1 and a node r2 ∈ V2 with sG1(r1)

p
= sG2(r2). Node r2 is also a leaf node and

sG1(p1)||V1|−1

p
= sG2(p2)||V1|−1 for their neighbors p1 ∈ V1 and p2 ∈ V2. Applying the

above claim to r1, p1, r2, p2 proves the isomorphism of G1 and G2.

Note that the above proof provides a new polynomial time algorithm for trees. In
fact, there exists a linear time algorithm to decide whether two trees are isomorphic [1].

In what follows, we prove that two 3-connected planar graphs are isomorphic if and
only if they are 3-strongly walk isomorphism.

Lemma 3.10. Let G be a 3-connected planar graph. If i1, i2, i3 ∈ V are three distinct
nodes sharing a common face, then s3

G(i1, i2, i3)i 6= s3
G(i1, i2, i3)j for all distinct i, j ∈

V .

Proof. For all k ∈ N, let γk be a V → R
2 function defined as follows. If k = 0, let

γ0(i) :=


(0, 0), if i = i1

(0, 1), if i = i2

(1, 0), if i = i3

(1, 1), otherwise,

(14)

for k ≥ 1, let

γk(i) :=

γk−1(i), if i ∈ {i1, i2, i3}
1

δG(i)

∑
i′∈ΓG(i)

γk−1(i′), otherwise. (15)

As k goes to infinity, γk converges to a planar embedding [19], therefore γk is an
injection for sufficiently large k. Therefore it suffices to show that

γk(i) 6= γk(j) =⇒ s3
G(i1, i2, i3)ik 6= s3

G(i1, i2, i3)jk (16)

holds for all i, j ∈ V , which we prove by induction on k.
The base case, γ0(i) 6= γ0(j) =⇒ s3

G(i1, i2, i3)i0 6= s3
G(i1, i2, i3)j0, easily follows by

definition. By induction, suppose that (16) holds for k − 1, where k ≥ 1.
If i ∈ {i1, i2, i3} or j ∈ {i1, i2, i3}, then (16) holds, since the rows of s3

G(i1, i2, i3)|k
corresponding to nodes {i1, i2, i3} are unique. Assume that i, j /∈ {i1, i2, i3}. By
definition, γk(i) 6= γk(j) means that

1

δG(i)

∑
i′∈ΓG(i)

γk−1(i′) 6= 1

δG(j)

∑
j′∈ΓG(j)

γk−1(j′). (17)

If δG(i) 6= δG(j), then (16) holds by the definition of s3
G(i1, i2, i3). Otherwise, (17)

implies that
{γk−1(i′) : i′ ∈ ΓG(i)}# 6= {γk−1(j′) : j′ ∈ ΓG(j)}# (18)
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which, by induction, means that

{s3
G(i1, i2, i3)i′ k−1 : i′ ∈ ΓG(i)}# 6= {s3

G(i1, i2, i3)j′ k−1 : j′ ∈ ΓG(j)}# (19)

holds, and therefore s3
G(i1, i2, i3)ik 6= s3

G(i1, i2, i3)jk.

Theorem 3.11. Two 3-connected planar graphs, G1 and G2 are isomorphic if and
only if s3

G1
= s3

G2
.

Proof. It suffices to show that if s3
G1

= s3
G2

, then G1 and G2 are isomorphic. Let
i1, i2, i3 ∈ V1 be three distinct nodes on a common face in some planar embedding of
G1. By definition, s3

G1
= s3

G2
means that {s3

G1
(i) : i ∈ V1}# = {s3

G2
(j) : j ∈ V2}#,

therefore there exists j1 ∈ V2 s.t. s3
G1

(i1) = s3
G2

(j1). Similarly, one gets that there

exists j2 ∈ V2 s.t. s3
G1

(i1, i2) = s3
G2

(j1, j2), and there exists j3 ∈ V2 s.t. s3
G1

(i1, i2, i3)
p
=

s3
G2

(j1, j2, j3). The following claim provides the sought bijection.

Claim 3.12. There is a unique bijection π : V1 −→ V2 for which s3
G1

(i1, i2, i3)i
p
=

s3
G2

(j1, j2, j3)π(i) holds for all i ∈ V1, and this π is edge-preserving.

Proof. By Lemma 3.10, the labels in G1 are unique, that is

s3
G1

(i1, i2, i3)i
p
= s3

G1
(i1, i2, i3)i′ ⇐⇒ i = i′ (20)

follows. Since s3
G1

(i1, i2, i3)
p
= s3

G2
(j1, j2, j3), the labels in G2 are unique too, i.e. one

has that
s3
G2

(j1, j2, j3)j
p
= s3

G2
(j1, j2, j3)j′ ⇐⇒ j = j′. (21)

Given that s3
G1

(i1, i2, i3)
p
= s3

G2
(j1, j2, j3), the unique existence of π easily follows from

(20) and (21). In order to show that π is edge-preserving, observe that (20) and (21)
hold even for the first n + 1 columns of matrices s3

G1
(i1, i2, i3) and s3

G2
(j1, j2, j3) by

Claim 3.2. Accordingly, no two rows turn out to be different in column (n+ 2). More
precisely,

{s3
G1

(i1, i2, i3)i′ n+1 : i′ ∈ ΓG1(i)}# = {s3
G2

(j1, j2, j3)j′ n+1 : j′ ∈ ΓG2(π(i))}# (22)

hold for all nodes i ∈ V1. Observe that for all nodes i ∈ V1

{π(i′) : i′ ∈ ΓG1(i)}# = {j′ : j′ ∈ ΓG2(π(i))}# (23)

follows from (22), since the rows of matrices s3
G1

(i1, i2, i3)
∣∣
n+1

and s3
G2

(j1, j2, j3)
∣∣
n+1

uniquely identify the corresponding nodes. Equation (23) means that π is edge-
preserving, which completes the proof.
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