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A Primal-Dual Approach for Large Scale Integer
Problems

Alpár Jüttner? ? ? and Péter Madarasi‡

Abstract

This paper presents a refined approach to using column generation to solve
specific type of large integer problems. A primal-dual approach is presented
to solve the Restricted Master problem belonging to the original optimization
task. Firstly, this approach allows a faster convergence to the optimum of the
LP relaxation of the problem. Secondly, the existence of both an upper and
lower bound of the LP optimum at each iteration allows a faster searching of
the Branch-and-Bound tree. To achieve this an early termination approach
is presented. The technique is demonstrated on the Generalized Assignment
problem and Parallel Machine Scheduling problem as two reference applications.

Keywords: large scale optimization, column generation, primal-dual methods,
integer programming, scheduling

1 Introduction

One of the most successful approaches to solve large scale practical combinatorial op-
timization problems is the combination of special linear programming techniques such
as Dantzig-Wolfe Decomposition, Column Generation or Lagrangian relaxation with
Cutting Planes, Branch-and-Bound (B&B) or certain iterative rounding techniques.
Methods of this type are collectively known as Branch-and-Cut-and-Price (B-C-P).

These approaches assume that the problem to be solved is formulated as a huge
but well structured linear (or integer) program (often referred to as a master problem
(MP)), which is then decomposed into a higher and a lower level subproblem, referred
to as restricted master problem (RMP) and column generator (CG) or pricing prob-
lem. In case of Lagrangian relaxation, they are called Lagrangian dual problem and
Lagrangian subproblem, respectively [13].
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Section 2. Primal-dual method for solving the RMS 2

Beginning with the early results of Ford and Fulkerson [12], Appelgren[2], and
others, especially after high performance linear programming solvers became widely
available, Column Generation and Branch-and-Price are now standard tools for tack-
ling various industrial math optimization problems. [3, 22, 20, 19]. It has successfully
been applied to versions of traveling salesman, vehicle routing and crew scheduling
problems [6], airline crew pairing [5], scheduling and fleet assignments, in telecom-
munication (network dimensioning, resource management and routing) and to staff
scheduling problems [8], as well as to generic combinatorial optimization problems
such as (integer) multicommodity flows [12], maximum stable-set [4] and graph col-
oring problems [16]. These works made extensive efforts on improving convergence of
Column Generation and on developing efficient problem specific branching strategies
(see Sections 2 and 3). On the other hand, several problem classes are still practically
intractable, even though they seem to fit well into this framework.

The aim of this work is to discover ways to further widen the applicability of
this approach by presenting a novel primal-dual solution technique that in one hand
provides a faster convergence of the LP relaxation of the problem and in the other
hand, allows a more effective execution of the usual Branch-and-Bound scheme to find
the integer optimum solution.

The rest of the paper is organized as follows. Section 2 presents a refined ap-
proach that improves on the convergence rate solving the RMS problem in practice
and, in addition, is able to provide both a lower and an upper bound of optimum at
each iteration. Then, utilizing this property, Section 3 presents the early termination
technique for B&B in order to speed up finding the integer optimum. Finally Sec-
tion 4 presents the applicability of the proposed approach to two specific well-know
optimization problems.

2 Primal-dual method for solving the RMS

When implementing a column generation based solution, one must often face the poor
convergence of the simplex-based RMP, especially towards the end of the computation.
A close to optimal solution may be found relatively fast, but then a long time is needed
to find the real optimum (called the tail-off effect). Another related phenomenon is the
heavy oscillation of the dual variables instead of a smooth convergence to the optimal
values. This is widely considered as the main reason for the poor performance [14].
One of the first proposals for handling this issue is the BOXSTEP method proposed
by Marsten at al. [15] and the Stabilized Column Generation proposed by du Merle
et al. [9], which is considered the most promising stabilization technique.

Although these techniques are based on the dual considerations of the RMP, they
are still primal approaches from the perspective of the Master Problem, with the
property that they maintain a (non-optimal) feasible solution during the execution.

On the other hand, Lagrangian relaxation [10, 13, 11, 23, 19] represents a com-
pletely different approach. The Lagrangian subproblem computes a lower bound to
the optimum of the Master Problem, while the Lagrangian dual problem aims at
finding the parameters maximizing the lower bound, which maximum is in fact equal
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Section 3. Branching Strategies 3

to the optimum of the (linear relaxation of) the Master Problem. The Lagrange
relaxation[13] of the same problem combined with the standard subgradient method
often provides a rapidly converging lower bound, while requires solving the same pric-
ing subproblem. Unfortunately, Lagrange relaxation alone cannot produce a primal
feasible solution, and the subgradient method, while it is very simple to implement
still in many cases converges extremely fast, also suffers from frequent instability,
tends to ”stuck” and fails to eventually find the optimum.

Therefore, we propose a combination of the subgradient method with a primal ap-
proach. For the latter one we chose a linear-programming based stabilization [17].
This technique do not use the dual solution of the master problem as the price vec-
tor for column generation, but combines it with the preceding dual solutions. The
smoothing rule proposed in [21], and reconsidered in [17] suggests π̃t = απ̂+(1−α)πt

using as pricing vector, where πt denotes the current dual vector, π̂ is the incumbent
dual vector and α ∈ [0, 1). In [17] proposes an efficient self-adjusting scheme adapting
α to the phases of the algorithm.

Although the subgradient method convergences highly effectively, its instability and
occasional divergence makes it impractical in case of large problems.

We improve this method be periodically inserting subgradient-based improving
phases into the above primal algorithms. The initial step size of subgradient phase is
calculated from the average oscillation of (||π̂ − πt||) of the last primal steps and it
stops when no improvents is found within a constant number of streps. In this way a
steady convergence of both the lower and upper bound can be ensu

3 Branching Strategies

It is well known that the branching scheme used in the conventional Branch-and-
Bound method is not applicable for column generation since it would require excluding
certain solutions from the pricing subproblem. Instead, various alternative branching
schemes have been proposed. They are rather problem specific and partition the inte-
ger solutions of the problem in a way that is compatible with the pricing subproblem.
See e.g. [7, 1, 18] for some illustrative examples. Section 4 presents such branching
rules for two specific problems.

Even though the primal-dual approach above realize a considerable speedup, we
still cannot afford running the column generation up to finding LP optimum at each
node of the branch tree. Exploiting the fact that the primal-dual approach maintains
both a lower and an upper bound converging to the optimal value, two ideas are
proposed for early termination of the solutions of the RMS subproblem.

Early cut. Normally, a node of the B&B tree is pruned when either the LP sub-
problem belonging to the node is infeasible or its LP optimum is worse than the best
integer solution found so far. However, the existence of a lower bound to the LP
optimum at each iterations allows us to terminate the solution as soon as the lower
bound reaches the cost of the best integer.
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Section 4. Reference Applications 4

Early branching. When solving the RMP, we iteratively generate an increasing
subset of columns of the full problem and calculate the best LP solution obtainable
using only those columns. In vast majority of the cases these solutions are fractional.
Therefore as soon as the LP solution of the RMP goes below the best integer solution
so far, we can conclude that branching will be inevitable. Thus we stop generating
further columns and branch immediately.

These techniques significantly reduce the time required to process one node of the
B&B tree, while — if properly implemented — it increases the size of the B&B tree
only marginally.

4 Reference Applications

4.1 Generalized Assignment

In the generalized assignment problem we are given n jobs to be assigned to m agents.
Each agent i has capacity ui, and when job j is assigned to agent i, it requires capacity
dij and costs cij. The solution consists of matching each job to exactly one agent,
so that the capacities of the agents are respected and the total assignment cost is
minimized.

Let Ki = {xi1, xi2, . . . , xiki} be the set of all feasible assignment of jobs to agent i,
that is xik = (xik1, x

i
k2, . . . , x

i
kn) satisfies ∑

1≤j≤n

dijx
i
kj ≤ ui (1)

xikj ∈ {0, 1} (j = 1, . . . , n). (2)

Let zik ∈ {0, 1} (i = 1, . . . ,m, k ∈ Ki) indicate whether assignment xik is se-
lected for agent i. Using these notations, the generalized assignment problem can be
formulated as follows.

min
∑

1≤i≤m

∑
1≤k≤ki

zik
∑

1≤j≤n

cijx
i
kj (3)∑

1≤i≤m

∑
1≤k≤ki

zikx
i
kj = 1 (j = 1, . . . , n) (4)∑

1≤k≤ki

zik ≤ 1 (i = 1, . . . ,m) (5)

zik ∈ {0, 1} (i = 1, . . . ,m, k ∈ Ki), (6)

where the first set of constraints provides that each job is assigned to exactly one
agent, while the second one enforces that at most one feasible assignment is chosen
for all the agents.

The corresponding pricing problem consists of finding a feasible assignment to one
of the agents with minimum reduced cost, which can be reformulated as a binary
knapsack problem.
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4.2 Parallel Machine Scheduling 5

For this problem, the following two branching rules are used. In each node, we fix
an agent i and job j, and create two subproblems (a) job j must be assigned to agent
i (b) job j is not allowed to be assigned to agent i. Thus in each node we are given
a subproblem, where some agent-job pairs are bounded and other ones are forbidden.
All these restrictions can easily be incorporated to the knapsack problem, and the
columns representing forbidden assignments can be avoided.

4.2 Parallel Machine Scheduling

In this problem, jobs J := {1, . . . , n} are given with processing times pj, due times
dj and weights wj. These jobs are to be processed by m identical machines while
minimizing

∑n
j=1wj max(0, Cj − dj), where Cj is the completion time of job j.

A schedule of a single machine is an s = (j1, j2, . . . , jk) sequence of jobs which
induces completion times Cji =

∑i
l=0 pjl and costs c(s) =

∑k
i=1wji max(0, Cji − dji)

The column generation formulation of this problem consists of the set of variables xsk
for each machine k = 1, . . . ,m and for each possible sk schedule of this machine. The
formulation is as follows.

min
m∑
k=1

∑
s∈Sk

c(s)xs (7)

m∑
k=1

∑
s∈Sk

χs(i)xs = 1 ∀i = 1, . . . , j (8)∑
s∈Sk

xs = 1 ∀k = 1, . . . ,m (9)

xs ∈ {0, 1} ∀k = 1, . . . ,m, s ∈ Sk (10)

Where χs is the characteristic vector of s, i.e. χs(i) := |{j ∈ s : j = i}|.
The corresponding pricing subproblem consists of finding a schedule for a single

machine with an additional constant ”price” yj of processing job j. In order to make
it solvable by a standard dynamic programming approach[17], we also allow multiple
processing of a job by a single machine, but limit the maximum number of jobs
processed by a single machine to be at most n.

To obtain an integer solution we apply a branch and bound method with the fol-
lowing branching rule.

In every node of the branching tree, for each machine k, we specify a series of subsets
J i
k of allowed jobs as the ith job to be processed. This problem can also be solved

using standard dynamic programming technique in time O(n2T ), by calculating the
values

c(t, l) :=


+∞ if t < 0,
0 if k = 0, t = 0,
min
j∈J l

k

(wj max(0, t− dj)− yj + c(t− pj, l − 1)) otherwise
(11)
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Section 5. Computational results – Generalized Assignment 6

for each values of k = 0, . . . , n and t = 0, . . . , T . The computed value c(t, l) is the
cost of the optimal sequence consisting of j jobs with the last job finished in time t.

In the root node of the branching tree we set J i
k := J for all k and i. Then we apply

two different kind of branchings.

1. If a job j appears in the (fractional) schedule of more than one machines, then
we choose a machine k and create two subproblems by (a) assigning job j solely
to machine k and (b) the disallowing processing job j by machine k. These con-
straints can be enforced by removing the job j from the corresponding constraint
sets J i

k′ .

2. If more than one job appears in the (fractional) schedule of a certain machine k
at a position i, we chose one and create two subproblem by either (a) allowing
this job only to be processed at positon k and (b) disallowing it to be processed
at position k.

It is easy to see that if neither of the above branching rules are applicable for an
optimal solution of the linear problem obtained by the column generation, then it is
an optimal integer solution of the current subproblem.

In order to apply the early branching approach, we generate columns until the
objective function value becomes lower than the best integer found so far. Then we
continue generating, until either an optimal solution is found or one of the branching
rules becomes applicable. Then we choose the biggest non integer variable and branch
according to that.

5 Computational results – Generalized Assign-

ment

To evaluate the efficiency of the proposed method, computational tests were carried
out with the GA problem.

For each specific problem, the a separation problem must be determined and im-
plemented s.t. the implemented solver can use it as an oracle. In the case of GA, the
separation problem is the knapsack problem, which has been solved using Pisinger’s
minknap [24], a state of the art knapsack problem solver.

On the other hand a branching rule should be determined and implemented, as well.
In our test the following rule was used: choose a fraction variable ,say , corresponding
to job j and machine i, and generate two branches (a) job j must be processed on
machine i (b) job j is forbidden to be processed on machine i. Many different strategies
were tried out to select the fractional variable, and choosing one being closest to 1/2
seems to be the most efficient way.

Random test instances were generated with 100 machines and 110 jobs, and all
of them were solved using 1) the proposed method including early branching [Early]
2) the proposed method without early branching [No Early] 3) CPLEX with default
setup [CPLEX]. The runtime, the number of columns and the number of B&B nodes
are shown in Figure 1, where each row corresponds to a random instance.
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Section 6. Conclusion 7

Figure 2: Effect of the early ideas on GA. The number of machines is 100, and that
of jobs is 110.

Figure 1: Efficiency comparison on GA. The number of machines is 100, and that of
jobs is 110.

To evaluate the contribution of each idea to the speed up, Figure 2 shows the
runtimes when using 1) the proposed method including early branching [Early] 2)
early cut only [Early Cut] 3) early branch only [Early Branch] 4) column generation
with neither early cut nor early branching [No Early] 5) Default CPLEX [CPLEX].
Again, each row corresponds to a random instance with 100 machines and 110 jobs.

6 Conclusion

This paper presented an improved primal-dual method for solving the RMS problem
of typical large scale combinatorial optimization problems which in turn allows imple-
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menting the B&B scheme with only partially solved subproblems. Our initial practical
evaluation shows promising improvements on the reference applications compared to
the existing solutions.
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