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VF2++ — An Improved Subgraph Isomorphism
Algorithm

Alpár Jüttner? ? ? and Péter Madarasi‡

Abstract

This paper presents a largely improved version of the VF2 algorithm for the
Subgraph Isomorphism Problem. The improvements are twofold. Firstly, it is
based on a new approach for determining the matching order of the nodes, and
secondly, more efficient — nevertheless easier to compute — cutting rules are
proposed. They together reduce the search space significantly.

In addition to the usual Subgraph Isomorphism Problem, the paper also
presents specialized algorithms for the Induced Subgraph Isomorphism and for
the Graph Isomorphism Problems.

Finally, an extensive experimental evaluation is provided using a wide range
of inputs, including both real-life biological and chemical datasets and stan-
dard randomly generated graph series. The results show major and consistent
running time improvements over the other known methods.

The C++ implementations of the algorithms are available open-source as
part of the LEMON graph and network optimization library.

Keywords: Computational Biology; Subgraph Isomorphism Problem

1 Introduction

In the last decades, combinatorial structures, and especially graphs have been con-
sidered with ever increasing interest, and applied to the solution of several new and
revised questions. The expressiveness, the simplicity and the deep theoretical back-
ground of graphs make them one of the most useful modeling tool and appears con-
stantly in several seemingly independent fields, such as bioinformatics and chemistry.

Complex biological systems arise from the interaction and cooperation of plenty
of molecular components. Getting acquainted with the structure of such systems
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Section 1. Introduction 2

at the molecular level is of primary importance, since protein-protein interaction,
DNA-protein interaction, metabolic interaction, transcription factor binding, neuronal
networks, and hormone signaling networks can be understood this way.

Many chemical and biological structures can easily be modeled as graphs, for in-
stance, a molecular structure can be considered as a graph, whose nodes correspond to
atoms and whose edges to chemical bonds. The similarity and dissimilarity of objects
corresponding to nodes are incorporated to the model by node labels. Understanding
such networks basically requires finding specific subgraphs, thus it calls for efficient
subgraph isomorphism algorithms.

Other real-world fields related to some variants of subgraph isomorphism include
pattern recognition and machine vision [1], symbol recognition [2], and face identifi-
cation [3].

Subgraph and induced subgraph isomorphism problems are known to be NP-
Complete [4], while the graph isomorphism problem is one of the few problems in
NP neither known to be in P nor NP-Complete. Although polynomial-time isomor-
phism algorithms are known for various graph classes, like trees and planar graphs [5],
bounded valence graphs [6], interval graphs [7] or permutation graphs [8]. Further-
more, an FPT algorithm has also been presented for the colored hypergraph isomor-
phism problem in [9].

In the following, some algorithms which do not need any restrictions on the graphs
are summarized. Even though, an overall polynomial behavior is not expectable from
such an alternative, they may often have good practical performance, in fact, they
might be the best choice in practice even on a graph class for which polynomial
algorithm is known.

The first practically usable approach was due to Ullmann [10], which is a commonly
used algorithm based on depth-first search with a complex heuristic for reducing the
number of visited states. A major problem is its Θ(n3) space complexity, which makes
it impractical in the case of big sparse graphs.

In a recent paper, Ullmann [11] presents an improved version of this algorithm
based on a bit-vector solution for the binary Constraint Satisfaction Problem.

The Nauty algorithm [12] transforms the two graphs to a canonical form before
starting to look for an isomorphism. It has been considered as one of the fastest
graph isomorphism algorithms, although graph categories were shown in which it
takes exponentially many steps. This algorithm handles only the graph isomorphism
problem.

The LAD algorithm [13] uses a depth-first search strategy and formulates the iso-
morphism as a Constraint Satisfaction Problem to prune the search tree. The con-
straints are that the mapping has to be one-to-one and edge-preserving, hence it is
possible to handle new isomorphism types as well.

The RI algorithm [14] and its variations are based on a state space representa-
tion. After reordering the nodes of the graphs, it uses some fast executable heuristic
checks without using any complex pruning rules. It seems to run really efficiently on
graphs coming from biology, and won the International Contest on Pattern Search in
Biological Databases [15].
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Section 2. Problem Statement 3

Currently, the most commonly used algorithm is the VF2 [16], an improved version
of VF [17], which was designed for solving pattern matching and computer vision
problems, and has been one of the best overall algorithms for more than a decade.
Although, it is not as fast as some of the new specialized algorithms, it is still widely
used due to its simplicity and space efficiency. VF2 uses a state space representation
and checks specific conditions in each state to prune the search tree.

Meanwhile, another variant called VF2 Plus [18] has been published. It is consid-
ered to be as efficient as the RI algorithm and has a strictly better behavior on large
graphs. The main idea of VF2 Plus is to precompute a heuristic node order of the
graph to be embedded, on which VF2 works more efficiently.

This paper introduces VF2++, a new further improved algorithm for the graph and
(induced) subgraph isomorphism problems. It is based on efficient cutting rules and
determines a node order in which VF2 runs significantly faster on practical inputs.

The rest of the paper is structured as follows. Section 2 defines the exact problems to
be solved, Section 3 provides a description of VF2. Based on that, Section 4 introduces
VF2++. Some technical details necessary for an efficient implementation are discussed
in Section 5. Finally, Section 6 provides a detailed experimental evaluation of VF2++
and its comparison to the state-of-the-art algorithm.

It is also worth mentioning that the C++ implementations of the algorithms have
been made publicly available for evaluation and use under an open-source license as
a part of LEMON [19, 20] graph library.1

2 Problem Statement

This section provides a formal description of the problems to be solved.

2.1 Definitions

Throughout the paper G1 = (V1, E1) and G2 = (V2, E2) denote two undirected graphs.

Definition 2.1.1. L : (V1 ∪ V2) −→ K is a node label function, where K is an
arbitrary set. The elements in K are the node labels. Two nodes, u and v are said
to be equivalent if L(u) = L(v).

For the sake of simplicity, the graph, subgraph and induced subgraph isomorphisms
are defined in a more general way.

Definition 2.1.2. G1 and G2 are isomorphic (by the node label L) if ∃m : V1 −→ V2
bijection, for which the following is true:

∀u ∈ V1 : L(u) = L(m(u)) and
∀u, v ∈ V1 : (u, v) ∈ E1 ⇔ (m(u),m(v)) ∈ E2

1The source code repository of the implementation is available at
http://lemon.cs.elte.hu/hg/lemon-vf2. It’s inclusion to the official LEMON library has
also been proposed, see http://lemon.cs.elte.hu/trac/lemon/ticket/597.
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Definition 2.1.3. G1 is a subgraph of G2 (by the node label L) if ∃m : V1 −→ V2
injection, for which the following is true:

∀u ∈ V1 : L(u) = L(m(u)) and
∀u, v ∈ V1 : (u, v) ∈ E1 ⇒ (m(u),m(v)) ∈ E2

Definition 2.1.4. G1 is an induced subgraph of G2 (by the node label L) if ∃m :
V1 −→ V2 injection, for which the following is true:

∀u ∈ V1 : L(u) = L(m(u)) and
∀u, v ∈ V1 : (u, v) ∈ E1 ⇔ (m(u),m(v)) ∈ E2

2.2 Common problems

The focus of this paper is on the following problems appearing in many applications.
The subgraph isomorphism problem is the following: is G1 isomorphic to any

subgraph of G2 by a given node label?
The induced subgraph isomorphism problem asks the same about the exis-

tence of an induced subgraph.
The graph isomorphism problem can be defined as induced subgraph isomor-

phism problem where the sizes of the two graphs are equal.
In addition, one may either want to find a single embedding or enumerate all of

them.

Finally, let us mention two possible further variants of the problems above. Firstly,
edge labels and edge label preserving versions of the above problems could also be
defined in an analogous way. Secondly, one may want to find (subgraph) isomorphism
between directed graphs.

In fact, it is straightforward to extend the proposed algorithm to handle both the
above variants. For the sake of simplicity, we omit these technical details from the
discussion.

3 The VF2 Algorithm

This algorithm is the basis of both the VF2++ and the VF2 Plus. VF2 is able
to handle all the variations mentioned in Section 2.2. Although it can also handle
directed graphs, for the sake of simplicity, only the undirected case is discussed.

3.1 Common notations

Assume G1 is searched in G2. The following definitions and notations is used through-
out this paper.

Definition 3.1.1. An injection m : D −→ V2 is called (partial) mapping, where
D ⊆ V1.
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3.2 Overview of the algorithm 5

Notation 3.1.1. D(f) and R(f) denote the domain and the range of a function f ,
respectively.

Definition 3.1.2. Mapping m covers a node u ∈ V1 ∪ V2 if u ∈ D(m) ∪R(m).

Definition 3.1.3. A mapping m is whole mapping if m covers all the nodes of V1,
i.e. D(m) = V1.

Definition 3.1.4. Let extend(m, (u, v)) denote the function f : D(m) ∪ {u} −→
R(m) ∪ {v}, for which ∀w ∈ D(m) : f(w) = m(w) and f(u) = v holds, where
u ∈ V1 \D(m) and v ∈ V2 \R(m); otherwise extend(m, (u, v)) is undefined.

Notation 3.1.2. Throughout the paper, PT denotes a generic problem type which
can be substituted by any of the SUB, IND and ISO problems, which stand for the
problems mentioned in Section 2.2 respectively.

Definition 3.1.5. Let m be a mapping. The consistency function for PT is a
logical function ConsPT(m) for which ConsPT(m) is true if and only if m satisfies
the requirements of PT considering the subgraphs of G1 and G2 induced by D(m) and
R(m), respectively.

Definition 3.1.6. Let m be a mapping. A logical function CutPT is a cutting
function for PT if the following holds. CutPT(m) is false if there exists a sequence
of extend operations which results in a whole mapping satisfying the requirements of
PT .

Definition 3.1.7. A mapping m is said to be consistent mapping by PT if
ConsPT (m) is true.

ConsPT and CutPT will often be used in the following form.

Notation 3.1.3. Let ConsPT(p,m) := ConsPT (extend(m, p)), and CutPT(p,m) :=
CutPT (extend(m, p)), where p ∈ V1\D(m)×V2\R(m).

ConsPT will be used to check the consistency of the already covered nodes, while
CutPT is for looking ahead to recognize if no whole consistent mapping can contain
the current mapping.

3.2 Overview of the algorithm

VF2 begins with an empty mapping and gradually extends it with respect to the
consistency and cutting functions until a whole mapping is reached.

Algorithm 1 is a high-level description of the VF2 algorithm. Each state of the
matching process can be associated with a mapping m. The initial state is associated
with a mapping m, for which D(m) = ∅, i.e. it starts with an empty mapping.

For the current mapping m, the algorithm computes Pm, the set of candidate node
pairs for extending the current mapping m.

For each pair p in Pm, ConsPT (p,m) and CutPT (p,m) are evaluated. If the former
is true and the latter is false, the whole process is recursively applied to extend(m, p).
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3.3 The candidate set 6

Algorithm 1 A high level description of V F2

1: procedure VF2(Mapping m, ProblemType PT )
2: if m covers V1 then
3: Output(m)
4: else
5: Compute the set Pm of the candidate pairs for extending m
6: for all p ∈ Pm do
7: if ConsPT (p,m) ∧ ¬CutPT (p,m) then
8: call VF2(extend(m, p), PT )

Otherwise, extend(m, p) is not consistent by PT , or it can be proved that m can not
be extended to a whole mapping.

The correctness of the procedure follows from the claim below.

Claim 3.1. Through consistent mappings, only consistent whole mappings can be
reached, and all the consistent whole mappings are reachable through consistent map-
pings.

Note that a mapping may be reached in exponentially many different ways, since
the order of extensions does not influence the nascent mapping.

However, one may make the following observations.

Definition 3.2.1. A total order (uσ(1), uσ(2), .., uσ(|V1|)) of V1 is matching order if
VF2 can cover uσ(d) on the d-th level for all d ∈ {1, .., |V1|}.

Claim 3.2. If VF2 is prescribed to cover the nodes of G1 according to a matching or-
der, then no mapping can be reached more than once and each whole mapping remains
reachable.

Note that the cornerstone of the improvements to VF2 is to choose a proper match-
ing order.

3.3 The candidate set

Let Pm be the set of the candidate pairs for inclusion in m.

Notation 3.3.1. Let T1(m) := {u ∈ V1\D(m) : ∃ũ ∈ D(m) : (u, ũ) ∈ E1}, and
T2(m) := {v ∈ V2\R(m) : ∃ṽ ∈ R(m) : (v, ṽ) ∈ E2}.

The set Pm contains the pairs of uncovered neighbors of covered nodes, and if there
is not such a node pair, all the pairs containing two uncovered nodes are added.
Formally, let

Pm =

{
T1(m)× T2(m) if T1(m) 6=∅ and T2(m) 6= ∅,
(V1\D(m))×(V2\R(m)) otherwise.
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3.4 Consistency 7

3.4 Consistency

Let p = (u, v) ∈ V1×V2, and suppose m is a consistent mapping by PT . ConsPT (p,m)
checks whether adding pair p into m leads to a consistent mapping by PT .

For example, the consistency function of the induced subgraph isomorphism prob-
lem is the following.

Notation 3.4.1. Let Γ1(u) := {ũ ∈ V1 : (u, ũ) ∈ E1}, and Γ2(v) := {ṽ ∈ V2 :
(v, ṽ) ∈ E2}, where u ∈ V1 and v ∈ V2. That is, Γi(w) denotes the set of neighbors of
node w in Gi (i = 1, 2).

Claim 3.3. extend(m, (u, v)) is a consistent mapping by IND if and only if m is
consistent and (∀ũ ∈ D(m) : (u, ũ) ∈ E1 ⇔ (v,m(ũ)) ∈ E2).

The following formulation gives an efficient way of calculating ConsIND.

Claim 3.4. ConsIND((u, v),m) := ConsIND(m)∧L(u)=L(v)∧ (∀ṽ ∈ Γ2(v)∩R(m) :
(u,m−1(ṽ)) ∈ E1) ∧ (∀ũ ∈ Γ1(u) ∩D(m) : (v,m(ũ)) ∈ E2) is the consistency function
for IND.

3.5 Cutting rules

CutPT (p,m) is defined by a collection of efficiently verifiable conditions. The require-
ment is that CutPT (p,m) can be true only if it is impossible to extend extend(m, p)
to a whole mapping.

As an example, a cutting function of induced subgraph isomorphism problem is
presented.

Notation 3.5.1. Let T̃1(m) := (V1\D(m))\T1(m), and
T̃2(m) := (V2\R(m))\T2(m).

Claim 3.5. CutIND((u, v),m) := |Γ2(v) ∩ T2(m)| < |Γ1(u) ∩ T1(m)| ∨ |Γ2(v) ∩
T̃2(m)| < |Γ1(u) ∩ T̃1(m)| is a cutting function for IND.

4 The VF2++ Algorithm

Although any matching order makes the search space of VF2 a tree, its choice turns
out to dramatically influence the number of visited states. The goal is to determine
an efficient one as quickly as possible.

The main reason for the superiority of VF2++ over VF2 is twofold. Firstly, taking
into account the structure and the node labeling of the graph, VF2++ determines a
matching order in which most of the unfruitful branches of the search space can be
pruned immediately. Secondly, introducing more efficient — nevertheless still easier
to compute — cutting rules reduces the chance of going astray even further.

In addition to the usual subgraph isomorphism problem, specialized versions for
induced subgraph and graph isomorphism problems have also been designed.
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Note that a weaker version of the cutting rules of VF2++ and an efficient candidate
set calculation method were described in [18].

The basic ideas and the detailed description of VF2++ are provided in the following.

The goal is to find a matching order in which the algorithm is able to recognize
inconsistency or prune the infeasible branches on the highest levels and goes deep only
if it is needed.

Notation 4.0.1. Let ConnH(u) := |Γ1(u)∩H|, that is the number of neighbors of u
which are in H, where u ∈ V1 and H ⊆ V1.

The principal question is the following. Suppose a mapping m is given. For which
node of T1(m) is the hardest to find a consistent pair in G2? The more covered
neighbors a node in T1(m) has — i.e. the largest ConnD(m) it has —, the more rare-
to-satisfy consistency constraints for its pair are given.

Most of the graphs of biological and chemical structures are sparse, thus several
nodes in T1(m) may have the same ConnD(m), which makes reasonable to define a
secondary and a tertiary order between them. The observation above proves itself to
be as determining, that the secondary ordering prefers nodes with the most uncovered
neighbors among which have the same ConnD(m) to increase ConnD(m) of uncovered
nodes as much, as possible. The tertiary ordering prefers nodes having the rarest
uncovered labels in G2.

Note that the secondary ordering is the same as ordering by degrees, which is a
static data in front of the above used.

These rules can easily result in a matching order which contains the nodes of a
long path successively, whose nodes may have low Conn and is easy to match into
G2. To try to avoid that, a Breadth-First-Search order is used, and on each of its
levels, the ordering procedure described above is applied.

In the following, examples are shown, demonstrating that VF2 may be slow, even
though a matching can be found easily by using a proper matching order.

Example 4.0.1. Suppose G1 can be mapped into G2 in many ways without node
labels. Let u ∈ V1 and v ∈ V2.
L(u) := black
L(v) := black
L(ũ) := red ∀ũ ∈ V1\{u}
L(ṽ) := red ∀ṽ ∈ V2\{v}

Now, any mapping by L must contain (u, v), since u is black and no node in V2 has
a black label except v. If unfortunately u were the last node which will get covered,
VF2 would check only in the last steps, whether u can be matched to v.

However, had u been the first matched node, u would have been matched immediately
to v, so all the mappings would have been precluded in which node labels can not
correspond.

Example 4.0.2. Suppose there is no node label given, and G1 is a small graph that
can not be mapped into G2 and u ∈ V1.
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4.1 Matching order 9

Let G′1 := (V1 ∪ {u′1, u′2, .., u′k}, E1 ∪ {(u, u′1), (u′1, u′2), .., (u′k−1, u′k)}), that is, G′1 is
G1∪{a k long path, which is disjoint from G1 and one of its starting points is connected
to u ∈ V1}.

If, unfortunately, the nodes of the path were the first k nodes in the matching order,
the algorithm would iterate through all the possible k long paths in G2, and it would
recognize that no path can be extended to G′1.
However, had it started by the matching of G1, it would not have matched any nodes
of the path.

These examples may look artificial, but the same problems also appear in real-world
instances, even though in a less obvious way.

4.1 Matching order

Notation 4.1.1. Let FM(l):= |{v ∈ V2 : l = L(v)}| − |{u ∈M : l = L(u)}|, where l
is a label and M⊆ V1.

Definition 4.1.1. Let arg maxf (S) := {u ∈ S : f(u) = maxv∈S{f(v)}} and
arg minf (S) := arg max(−f)(S), where S is a finite set and f : S −→ R.

Notation 4.1.2. Let deg(v) denote the degree of node v.

Algorithm 2 The method of V F2 + + for determining the node order

1: procedure VF2++order
2: M := ∅ . matching order
3: while V1\M 6= ∅ do
4: r ∈ arg maxdeg (arg minFM◦L(V1\M))
5: Compute T , a BFS tree with root node r.
6: for d = 0, 1, ..., depth(T ) do
7: Vd:=nodes of the d-th level
8: Process Vd . See Algorithm 3

Algorithm 3 The method for processing a level of the BFS tree

1: procedure VF2++ProcessLevel(Vd)
2: while Vd 6= ∅ do
3: m ∈ arg minFM◦ L( arg maxdeg(arg maxConnM(Vd)))
4: Vd := Vd\m
5: Append node m to the end of M
6: Refresh FM

Algorithm 2 is a high-level description of the matching order procedure of VF2++.
It computes a BFS tree for each component in ascending order of their rarest node
labels and largest deg, whose root vertex is the minimal node of its component. Al-
gorithm 3 is a method to process a level of the BFS tree, which appends the nodes of
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4.2 Cutting rules 10

the current level in descending lexicographic order by (ConnM, deg,−FM) separately
to M, and refreshes FM immediately.

Claim 4.1. Algorithm 2 provides a matching order.

4.2 Cutting rules

This section presents the cutting rules of VF2++, which are improved by using extra
information coming from the node labels.

Notation 4.2.1. Let Γl
1(u) := {ũ : L(ũ) = l ∧ ũ ∈ Γ1(u)} and Γl

2(v) := {ṽ : L(ṽ) =
l ∧ ṽ ∈ Γ2(v)}, where u ∈ V1, v ∈ V2 and l is a label.

Claim 4.2 (Cutting function for ISO).

LabCutISO((u, v),m) :=
∨

l is label

|Γl2(v) ∩ T2(m)| 6= |Γl1(u) ∩ T1(m)| ∨

∨
l is label

|Γl2(v) ∩ T̃2(m)| 6= |Γl1(u) ∩ T̃1(m)|

is a cutting function for ISO.

Claim 4.3 (Cutting function for IND).

LabCutIND((u, v),m) :=
∨

l is label

|Γl2(v) ∩ T2(m)|< |Γl1(u) ∩ T1(m)| ∨

∨
l is label

|Γl2(v) ∩ T̃2(m)| < |Γl1(u) ∩ T̃1(m)|

is a cutting function for IND.

Claim 4.4 (Cutting function for SUB).

LabCutSUB((u, v),m) :=
∨

l is label

|Γl2(v) ∩ T2(m)|< |Γl1(u) ∩ T1(m)|

is a cutting function for SUB.

5 Implementation details

This section provides a detailed summary of an efficient implementation of VF2++.

Notation 5.0.1. Let ∆1 and ∆2 denote the largest degree in G1 and G2, respectively,
and let ∆ = max{∆1,∆2}.
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5.1 Storing a mapping 11

5.1 Storing a mapping

After fixing an arbitrary node order (u0, u1, .., u|V1|−1) of G1, an array M can be used
to store the current mapping in the following way.

M [i] =

{
v if (ui, v) is in the mapping

INVALID if no node has been mapped to ui,

where i ∈ {0, 1, .., |V1| − 1}, v ∈ V2 and INVALID means ”no node”.

5.2 Avoiding the recurrence

The recursion of Algorithm 1 can be realized as a while loop, which has a loop counter
depth denoting the current depth of the recursion. Fixing a matching order, let M
denote the array storing the current mapping. Observe that M is INVALID from
index depth+1 and not INVALID before depth. M [depth] changes while the state is
being processed, but the property is held before both stepping back to a predecessor
state and exploring a successor state.

The necessary part of the candidate set is easy to maintain or compute by following
the steps described in Section 3.3. A much faster method has been designed for
biological and sparse graphs, see the next section for details.

5.3 Calculating the candidates for a node

The task is not to maintain the candidate set, but to generate the candidate nodes in
G2 for a given node u ∈ V1. In case of any of the three problem types and a mapping
m, if a node v ∈ V2 is a potential pair of u ∈ V1, then ∀u′ ∈ D(m) : (u, u′) ∈ E1 ⇒
(v,m(u′)) ∈ E2. That is, each covered neighbor of u has to be mapped to a covered
neighbor of v, i.e. selecting arbitrarily a covered neighbor u′ of u, all of the admissible
candidates for u are among the neighbors of m(u′).

Having said that, an algorithm running in Θ(∆2) time is describable if there exists
a covered node in the component containing u, and a linear one otherwise.

5.4 Determining the node order

This section describes how the node order preprocessing method of VF2++ can effi-
ciently be implemented.

For using lookup tables, the node labels are associated with the numbers
{0, 1, .., |K| − 1}, where K is the set of the labels. It enables FM to be stored in
an array. At first, the node order M = ∅, so FM[i] is the number of nodes in V2
having label i, which is easy to compute in Θ(|V2|) steps.

Representing M ⊆ V1 as an array of size |V1|, both the computation of the BFS
tree, and processing its levels by Algorithm 3 can be done in-place by swapping nodes.
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5.5 Cutting rules

Section 4.2 described the cutting rules using the sets T1, T2, T̃1 and T̃2, which are
dependent on the current mapping. The aim is to check the labeled cutting rules of
VF2++ in Θ(∆) time.

Firstly, suppose that these four sets are given a way, that checking whether a node
is in a certain set takes constant time, e.g. they are given by their 0-1 characteristic
vectors. Let L be an initially zero integer lookup table of size |K|. After incrementing
L[L(u′)] for all u′ ∈ Γ1(u)∩T1(m) and decrementing L[L(v′)] for all v′ ∈ Γ2(v)∩T2(m),
the first part of the cutting rules can be checked in Θ(∆) time by considering the
proper signs of L. Setting L to zero takes Θ(∆) time again, which makes it possible
to use the same table through the whole algorithm. The second part of the cutting
rules can be verified using the same method with T̃1 and T̃2 instead of T1 and T2.
Thus, the overall time complexity is Θ(∆).

To maintain the sets T1, T2, T̃1 and T̃2, two other integer lookup tables storing the
number of covered neighbors of the nodes of the two graphs can be used. This repre-
sentation allows constant-time membership checking, furthermore it is maintainable
in Θ(∆) time whenever a node pair is added or subtracted by incrementing or decre-
menting the proper indices. A further improvement is that the values of L[L(u′)] in
case of checking u are dependent only on u, i.e. on the current depth of the recursion,
so for each u ∈ V1, an array of pairs (label, number of such labels) can store L. Note
that these arrays are at most of size ∆1 if pairs with non-appearing node labels are
discarded.

Using similar techniques, the consistency function can be evaluated in Θ(∆) steps,
as well.

6 Experimental results

This section compares the performance of VF2++ and VF2 Plus. According to our
experience, both algorithms run faster than VF2 with orders of magnitude, thus its
inclusion was not reasonable.

The algorithms were implemented in C++ using the open-source LEMON graph
and network optimization library [19, 20]. The tests were carried out on a Linux-based
system with an Intel i7 X980 3.33 GHz CPU and 6 GB of RAM.

6.1 Biological graphs

The tests have been executed on a recent biological dataset created for the Inter-
national Contest on Pattern Search in Biological Databases [15], which has been
constructed of molecule, protein and contact map graphs extracted from the Protein
Data Bank [21].

The molecule dataset contains small graphs with less than 100 nodes and an
average degree of less than 3. The protein dataset contains graphs having 500-10 000
nodes and an average degree of 4, while the contact map dataset contains graphs
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with 150-800 nodes and an average degree of 20.

In the following, both the induced subgraph and the graph isomorphism problems
will be examined. This dataset provides graph pairs, between which all the induced
subgraph isomorphisms have to be found. For the running times, please see Figure 1.

In an other experiment, the nodes of each graph in the database had been shuffled,
and an isomorphism between the shuffled and the original graph was searched. The
running times are shown on Figure 2.
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(a) In the case of molecules, the algorithms have
similar behavior, but VF2++ is almost two times
faster even on such small graphs.
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(b) On contact maps, VF2++ runs almost in con-
stant time, while VF2 Plus has a near-linear be-
havior.
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(c) Both of the algorithms have linear behaviour
on protein graphs. VF2++ is more than 10 times
faster than VF2 Plus.

Figure 1: Induced subgraph isomorphism problem on biological graphs
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(a) The results are close to each other on molecules,
but VF2++ seems to be slightly faster as the num-
ber of nodes increases.
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(b) In the case of contact maps, there is no signifi-
cant difference, but VF2++ performs consistently
better.
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(c) On protein graphs, VF2 Plus has a super linear
time complexity, while VF2++ runs in near con-
stant time. The difference is about two orders of
magnitude on large graphs.

Figure 2: Graph isomorphism problem on biological graphs
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Figure 3: Graph isomorphism problem on random graphs

6.2 Random graphs

This section compares VF2++ with VF2 Plus on random graphs of large size. The
node labels are uniformly distributed. Let δ denote the average degree. For the
parameters of problems solved in the experiments, please see the top of each chart.

6.2.1 Graph isomorphism problem

To evaluate the efficiency of the algorithms in the case of graph isomorphism problem,
random connected graphs of less than 20 000 nodes have been considered. Generating
a random graph and shuffling its nodes, an isomorphism had to be found. Figure 3
shows the running times on graph sets of various density.

6.2.2 Induced subgraph isomorphism problem

This section presents a comparison of VF2++ and VF2 Plus in the case of induced
subgraph isomorphism problem. In addition to the size of graph G2, that of G1
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Figure 4: Induced subgraph isomorphism problem on random graphs having an aver-
age degree of 5

dramatically influences the hardness of a given problem too, so the overall picture is
provided by examining graphs to be embedded of various size.

For each chart, a number 0 < ρ < 1 has been fixed, and the following has been
executed 150 times. Generating a large graph G2 of an average degree of δ, choose
10 of its induced subgraphs having ρ|V2| nodes, and for all the 10 subgraphs find
a mapping by using both graph isomorphism algorithms. The δ = 5, 10, 35 and
ρ = 0.05, 0.1, 0.3, 0.8 cases have been examined, see Figure 4, 5 and 6.

As the experiments above demonstrates, VF2++ is faster than VF2 Plus and able
to handle really large graphs in milliseconds. Note that when IND was considered
and the graph to be embedded had proportionally few nodes (ρ = 0.05, or ρ = 0.1),
then VF2 Plus produced some inefficient node orders (e.g. see the δ = 10 case on
Figure 5). If these instances had been excluded, the charts would have looked similarly
to the other ones. Unsurprisingly, as denser graphs are considered, both VF2++ and
VF2 Plus slow down slightly, but remain practically usable even on graphs having 10
000 nodes.
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Figure 5: Induced subgraph isomorphism problem on random graphs having an aver-
age degree of 10
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Figure 6: Induced subgraph isomorphism problem on random graphs having an aver-
age degree of 35
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7 Conclusion

This paper presented VF2++, a new (sub)graph isomorphism algorithm based on
VF2, and analyzed it from a practical point of view.

Recognizing the importance of the node order and determining an efficient one,
VF2++ is able to match graphs of thousands of nodes in near practically linear time
including preprocessing. In addition to the proper order, VF2++ uses more efficient
cutting rules, which are easy to compute and make the algorithm able to prune most
of the unfruitful branches without going astray.

In order to show the efficiency of the new method, it has been compared to
VF2 Plus [18], which is the best contemporary algorithm.

The experiments show that VF2++ consistently outperforms VF2 Plus on biological
graphs. It seems to be asymptotically faster on protein and on contact map graphs
in the case of induced subgraph isomorphism problem, while in the case of graph
isomorphism problem, it has definitely better asymptotic behavior on protein graphs.

Regarding random sparse graphs, not only has VF2++ proved itself to be faster
than VF2 Plus, but it also has a practically linear behavior both in the case of induced
subgraph and graph isomorphism problems.
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[20] B. Dezső, A. Jüttner, P. Kovács, LEMON - an open source C++ graph template
library, Electronic Notes in Theoretical Computer Science 264 (5) (2011) 23 – 45,
proceedings of the Second Workshop on Generative Technologies (WGT) 2010.

[21] Protein Data Bank (June 2015).
URL http://www.rcsb.org/pdb

[22] QuantumBio Inc.
URL http://www.quantumbioinc.com

EGRES Technical Report No. 2018-03

http://lemon.cs.elte.hu
http://lemon.cs.elte.hu
http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
http://www.quantumbioinc.com
http://www.quantumbioinc.com

	Introduction
	Problem Statement
	Definitions
	Common problems

	The VF2 Algorithm
	Common notations
	Overview of the algorithm
	The candidate set
	Consistency
	Cutting rules

	The VF2++ Algorithm
	Matching order
	Cutting rules

	Implementation details
	Storing a mapping
	Avoiding the recurrence
	Calculating the candidates for a node
	Determining the node order
	Cutting rules

	Experimental results
	Biological graphs
	Random graphs
	Graph isomorphism problem
	Induced subgraph isomorphism problem


	Conclusion

