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Abstract

We consider weighted blocking problems (a.k.a. weighted transversal prob-
lems) of the following form. Given a finite set S, weights w : S → R+, and a
family F ⊆ 2S , find min{w(H) : H ⊆ S, H intersects every member of F}. In
our problems S is the set of edges of a (directed or undirected) graph and F
is the family of optimal solutions of a combinatorial optimization problem with
respect to a cost function c : S → R+. Note that the cost function c that defines
the family and the weight function w in the weighted transversal problem are
not related.

In particular, we study the following four kinds of families: minimum cost
k-spanning trees (unions of k edge-disjoint spanning trees), minimum cost s-
rooted k-arborescences (unions of k arc-disjoint arborescences rooted at node
s), and minimum cost (directed or undirected) k-braids between nodes s and t
(unions of k edge-disjoint s-t paths). We focus on the special cases when either
c or w is uniform. For the case c ≡ 0 (i.e. we want to block all combinatorial
objects, not just the optimal ones), we show that most of the problems are NP-
complete. In the other case, when w ≡ 1 (a minimum cardinality transversal
problem for F), most of our problems turn out to be polynomial-time solvable.

We also consider the problem of blocking k-edge-connectivity, which is re-
lated to both blocking k-spanning trees and blocking k-braids. We show that
the undirected case can be solved in polynomial time using the ideas of Zen-
klusen’s connectivity interdiction algorithm. In contrast, the directed version is
shown to be NP-complete.
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1 Introduction

By blocking problems we mean the following type of problems. Given a finite set S
and a family F ⊆ 2S, find min{|H| : H ⊆ S, H intersects every member of F}. The
family F consists of optimal solutions to some combinatorial optimization problem,
for example minimum cost k-spanning trees of a graph (where S is the set of edges
of a graph and a cost of each edge is given), or minimum cost k-arborescences of a
digraph (where S is the set of arcs of a digraph and again we have a cost function on
S). In the literature, these types of problems are also called minimum transversal
problems for the family F .

In a more general setting, we consider weighted blocking problems (or mini-
mum weight transversal problems), that is, a weight function w : S → R+ is also
given and we want to find min{w(H) : H intersects every member of F}. Note that
this weight function is independent from the cost function that defines the family F .

In particular, we will investigate the weighted blocking problem for four types
of combinatorial structures: optimal k-spanning trees, optimal k-arborescences, and
optimal undirected and directed k-braids. Let us define these objects.

Given an undirected graph G = (V,E), a k-spanning tree is a subset B of edges
that can be written as the union of k pairwise edge-disjoint spanning trees. It is known
that k-spanning trees form the family of bases of a matroid, and that a minimum cost
k-spanning tree can be found in polynomial time, if the cost c(e) of each edge is given.

A spanning arborescence in a digraph D = (V,A) is an arc set F ⊆ A that is a
spanning tree in the undirected sense and every node has in-degree at most one. Thus
there is exactly one node, the root node, with in-degree zero. If the node set is clear
from the context, spanning arborescences will be called arborescences for brevity.
The arc-disjoint union of k spanning arborescences is called a k-arborescence. If
every arborescence in the decomposition has the same root node s, then F is called
an s-rooted k-arborescence. Given D = (V,A), a positive integer k and a cost
function c : A → R+, a minimum cost k-arborescence or a minimum cost s-rooted
k-arborescence can be found efficiently using the matroid intersection algorithm; see
[17, Chapter 53.8] for a reference, where several related problems are considered.
The existence of an s-rooted k-arborescence is characterized by Edmonds’ disjoint
arborescence theorem, while the existence of a k-arborescence is characterized by a
theorem of Frank [7]. Frank also gave a linear programming description of the convex
hull of k-arborescences, generalizing Edmonds’ linear programming description of the
convex hull of s-rooted k-arborescences.

Given an undirected graph G = (V,E) and nodes s, t, an undirected k-braid
between s and t is a subset of edges of G that can be decomposed into k pairwise
edge-disjoint s − t paths. Directed k-braids are defined analogously: in a digraph
D = (V,A), a directed k-braid between nodes s and t is a subset of arcs that
can be decomposed into k pairwise arc-disjoint directed s− t paths. We will use the
term k-braid if we mean both the directed and undirected cases, or if the type of the
graph is clear from context. Also, nodes s and t are omitted if they are clear from
the context. It is known from network flow theory that we can find minimum cost
(directed or undirected) k-braids if a non-negative cost c(e) of every edge/arc is given.
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1.1 Related work

Let us mention some known special cases of blocking problems. The cuts (or co-
cycles) of a matroid are the minimal transversals of the family of bases; in other
words, a subset of the elements is a cut if it is an inclusionwise minimal subset that
contains at least one element from each basis. The problem of finding minimum
cuts in matroids has been studied in several different contexts (note the distinction
between minimal and minimum: minimal is shorthand for inclusionwise minimal,
while minimum means minimum size). Perhaps the best known special case is the
minimum cut problem in graphs, which can be solved using network flows, and faster
algorithms have also been developed (e.g. the Nagamochi-Ibaraki algorithm [15]).
This corresponds to the minimum cardinality blocking problem for spanning trees;
moreover, these methods also find the minimum weight cut, so they solve the minimum
weight blocking problem for spanning trees, too.

For a matroid M and a positive integer k, let kM denote the matroid union of k
identical copies of M . If M is a graphic matroid (or even a hypergraphic matroid,
see [12]), then the minimum cut of kM can be found in polynomial time, even if k is
part of the input. However, these methods do not extend to the minimum weight cut
problem. Another notable open question is the complexity of finding a minimum cut
in a rigidity matroid.

The minimum cut of a transversal matroid can also be found in polynomial time;
however, the problem of finding a minimum circuit of a transversal matroid is NP-
complete [14], which implies that the minimum cut problem is NP-complete for gam-
moids. Another line of research considers the minimum cut problem for binary ma-
troids. Vardy [19] proved that the problem is NP-complete in general, but Geelen,
Gerards, and Whittle [9] conjecture that the problem is in P for any minor-closed
proper subclass of binary matroids. Partial results about this conjecture have been
achieved by Geelen and Kapadia [10] and by Nägele, Sudakov, and Zenklusen [16].

The minimum cost bases (or optimal bases for brevity) of a matroid M form the
bases of another matroid which can be obtained by taking the direct sum of certain
minors of M . This means that we can find a minimum transversal of the family
of optimal bases of M by solving minimum cut problems in some minors of M . In
particular, if the minimum cut problem is solvable in polynomial time in a minor-
closed class of matroids, then a minimum transversal of optimal bases can also be
found in polynomial time. For example, the class of graphic matroids is minor-closed
and the minimum cut problem can be solved efficiently, so we can also efficiently find
a minimum transversal of the family of minimum spanning trees in a graph with edge
costs.

The minimum transversal problem for arborescences can be formulated as the min-
imization of the sum of the in-degrees of two disjoint non-empty node sets of the
digraph, which can be solved efficiently using network flows. The problem of finding
a minimum transversal of the family of minimum cost arborescences is considerably
more difficult. It can still be solved in polynomial time as shown in [4], but the
solution requires more sophisticated tools than network flows. Finding a minimum
transversal of the family of minimum cost k-arborescences is polynomial-time solvable
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for fixed k [2], but the problem is open if k is part of the input.
Let us finally mention that there is a lot of ongoing research on a related but slightly

different class of problems called interdiction problems. In our terminology, an
interdiction problem consists of finding H ⊆ S with w(H) ≤ B for some fixed budget
B, such that min{c(X) : X ∈ F , X∩H = ∅} is as large as possible. For example, if F
is the family of all spanning trees, then the aim is to find an edge set of weight at most
B whose removal results in the highest increase in the minimum cost of a spanning
tree. In contrast, in our problem the aim is to find the minimum weight edge set whose
removal increases the minimum cost of a spanning tree by an arbitrarily small amount.
Interdiction problems tend to be more difficult: spanning tree interdiction is NP-hard,
and the best known approximation factor is 4 [13]. Network flow interdiction is related
to blocking k-braids: the aim is to reduce the maximum s − t flow in a network as
much as possible, by removing edges of total weight at most B. This problem is also
NP-hard, and Chestnut and Zenklusen [5] proved that an no(1)-approximation would
imply an no(1)-approximation for the Densest k-Subgraph problem.

1.2 Our results

In this paper we consider the following problems.

Problem 1. Given a graph G = (V,E), cost function c : E → R+, weight function
w : E → R+ and a positive integer k, find min{w(H) : H ⊆ E,H intersects every
c-optimal k-spanning tree}.

Problem 2. Given a digraph D = (V,A), cost function c : A→ R+, weight function
w : A → R+, node s ∈ V and a positive integer k, find min{w(H) : H ⊆ A,H
intersects every c-optimal s-rooted k-arborescence}.

Problem 3. Given a graph G = (V,E), cost function c : E → R+, weight function
w : E → R+, nodes s, t ∈ V and a positive integer k, find min{w(H) : H ⊆ E,H
intersects every c-optimal k-braid from s to t}.

Problem 4. Given a digraph D = (V,A), cost function c : A→ R+, weight function
w : A → R+, nodes s, t ∈ V and a positive integer k, find min{w(H) : H ⊆ A,H
intersects every c-optimal k-braid from s to t}.

We consider two types of restrictions on w and c. When w ≡ 1, i.e. w is uniform,
our problems are minimum cardinality transversal problems, and they turn out
to be polynomial-time solvable. The second type of restriction is c ≡ 0, that is, we
want to block all combinatorial objects, not just the optimal ones. Note that
c ≡ 1 could also be chosen for blocking all k-spanning trees or k-arborescences, but it
is not suitable to describe all k-braids. With this restriction, most of our problems are
NP-complete. We leave two questions open: we do not know the status of Problem 1
for c ≡ 0 (even for k = 2), and we do not know the status of Problem 2 if w ≡ 1. Our
results are summarized in Table 1 below.
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Uniform weight Uniform cost
(w ≡ 1) (c ≡ 0)

Blocking optimal P (Theorem 7) Open
k-spanning trees (open even for k = 2)

(Problem 1)
Blocking optimal Open NPC (Theorem 15)
k-arborescences P for fixed k [2] (P for fixed k [3])

(Problem 2) P if c ≡ 0, w ≡ 1 [3]
Blocking optimal P (Theorem 19) NPC (Theorem 23)

undirected k-braids (P for fixed k, see Section 4)
(Problem 3)

Blocking optimal P (Theorem 21) NPC (Theorem 23)
directed k-braids (P for fixed k, see Section 4)

(Problem 4)

Table 1: Summary of results. P means that the problem is polynomial time solvable,
NPC means that it is NP-complete.

1.3 Notation

Let us overview some of the notation and definitions used in the paper. Any notation
not mentioned explicitly in this paper can be found in [8]. A partition P of a set
V is a collection of pairwise disjoint non-empty subsets of V that together cover V .
The partition is trivial if it consists of the single set V . We will use the notation |P|
to denote the number of sets in the partition P . A set family L ⊆ 2V is said to be
laminar if any two members of L are either disjoint or one is a subset of the other.
For a function x : A→ R and subset Z ⊆ A, we use x(Z) =

∑
a∈Z xa.

Given a (directed or undirected) graph G = (V,E) and a subset W ⊆ V , let
G[W ] = (W, {uv ∈ E : u, v ∈ W}) be the restriction of G to W , and G/W be the
graph obtained from G by contracting W into a single node (and deleting the loops
that arise). If B ⊆ E then we will also use B[W ] to mean the restriction of (V,B) to W
and B/W to mean the contraction of W in (V,B). If H ⊆ E then G−H = (V,E−H)
is the graph obtained from G by deleting the edges in H. Furthermore, if L ⊆ 2V

is a laminar family and W ∈ L, then we denote by L/W the laminar family that is
obtained from L by contracting W into a single node.

For a graph G = (V,E) and some Z ⊆ V , δG(Z) denotes the set of edges in E with
exactly one end-node in Z, and dG(Z) = |δG(Z)| is the number of these edges. A
graph G is said to be k-edge-connected if dG(Z) ≥ k for every ∅ 6= Z ( V .

For a digraph D = (V,A) and some Z ⊆ V , δinD (Z) and δoutD (Z) denote the set
of arcs entering and leaving the set Z, respectively. We will also use the notation
%D(Z) = |δinD (Z)|. A digraph D is said to be k-arc-connected if %D(Z) ≥ k for every
∅ 6= Z ( V .

For two nodes u, v ∈ V , the notation uv will be used to denote an undirected edge
between u and v, and also a directed arc from u to v. However, in order to make a
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clear distinction when necessary, we will sometimes write −→uv to denote a directed arc
from u to v.

2 Blocking optimal k-spanning trees

For a graph G = (V,E) and a partition P of the nodes of G, we denote by eG(P)
the number of edges of G that go between two different classes of P (cross-edges in
the partition P). An undirected graph G is said to be (k, l)-partition-connected if
eG(P) ≥ k(|P| − 1) + l holds for any non-trivial partition P of the nodes of G.

A characterization for the existence of k edge-disjoint spanning trees in undirected
graphs was given by Tutte.

Theorem 5 (Tutte, [18]). A graph contains k edge-disjoint spanning trees if and only
if it is (k, 0)-partition-connected.

The (k, l)-partition-connectivity of a graph can be checked in polynomial time, as
shown by the following result implicit in [8].

Theorem 6. Given a graph G = (V,E) and two positive integers k, l, we can decide
in polynomial time if G is (k, l)-partition-connected or not. If it is not, then we can
also find a partition P satisfying eG(P) < k(|P| − 1) + l.

Proof. If l ≥ k, then G is (k, l)-partition-connected if and only if it is (k + l)-edge-
connected [8, Proposition 1.2.11]. The (k + l)-edge-connectivity of G can be checked
in polynomial time using network flows or the Nagamochi-Ibaraki minimum cut al-
gorithm [15]. If the graph is not (k, l)-partition-connected then a minimum cut,
considered as a partition with 2 classes, can serve as a witness.

If l ≤ k, then the solution is described in [8], page 305.

Using these results, we can solve Problem 1 in polynomial time in the special case
when both c and w are uniform (w ≡ 1 and c ≡ 0): simply find (by logarithmic search)
the smallest positive integer l such that G is not (k, l)-partition-connected along with
a partition P satisfying eG(P) < k(|P| − 1) + l. The optimal solution will be an
arbitrary subset of cross-edges of P of size l (note that eG(P) = k(|P|−1) + l−1 ≥ l,
as G is (k, l − 1)-partition-connected). This approach can be extended to deal with
the case where c is not uniform.

Theorem 7. Problem 1 is solvable in polynomial time if w ≡ 1.

Proof. From the dual characterization of optimal k-spanning trees we get the following
lemma.

Lemma 8. Given a graph G = (V,E), a positive integer k and a cost function c :
E → R+, we can find in polynomial time disjoint subsets E0, E1 ⊆ E and a laminar
family L ⊆ 2V so that for any k-spanning tree B ⊆ E the following statements are
equivalent:

1. B is a c-optimal k-spanning tree,
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2. E1 ⊆ B ⊆ E − E0 and B[W ] is a k-spanning tree of G[W ] for every W ∈ L.
2

We say that E0 is the set of forbidden edges, while E1 is the set of mandatory
edges. Moreover, given a graph G = (V,E) and a laminar family L ⊆ 2V , we say
that a k-spanning tree B ⊆ E is L-tight if B[W ] is a k-spanning tree of G[W ] for
every W ∈ L. Note that B ⊆ E is an L-tight k-spanning tree if and only if it can be
decomposed into k edge-disjoint L-tight spanning trees. For later reference we state
the following problem.

Problem 9 (Blocking L-tight k-spanning trees). Given a graph G = (V,E) and a
laminar family L ⊆ 2V , find min{|H| : H intersects every L-tight k-spanning tree}.

Lemma 8 implies that the problem of blocking optimal k-spanning trees (Problem
1 for w ≡ 1) can be reduced to the problem of blocking L-tight k-spanning trees.
Indeed, if there are mandatory edges then we can block all optimal k-spanning trees
by a single (mandatory) edge. Otherwise, we can just remove the forbidden edges,
and the problem is to block L-tight k-spanning trees in G−E0. The rest of the proof
is about the solution of Problem 9. We note that we can decide in polynomial time
if an L-tight k-spanning tree exists at all: this is a maximum cost k-spanning tree
problem by setting the cost of an edge uv ∈ E to be the number of sets in L that
contain both endpoints of the edge – that is, cost(uv) = |{W ∈ L : u, v ∈ W}|.

The following observation leads us to the solution of Problem 9.

Claim 10. Given a graph G = (V,E) and a laminar family L ⊆ 2V , let W ∈ L be
an inclusionwise minimal member of L. A subset B ⊆ E is an L-tight k-spanning
tree if and only if B[W ] is a k-spanning tree in G[W ], and B/W is an L/W -tight
k-spanning tree in G/W .

Proof: Clearly, if B ⊆ E is an L-tight k-spanning tree then B[W ] is a k-spanning
tree in G[W ], and B/W is an L/W -tight k-spanning tree in G/W .

On the other hand, assume that B ⊆ E satisfies B[W ] =
⋃̇k

i=1F
1
i and B/W =⋃̇k

i=1F
2
i where each F 1

i is a spanning tree of G[W ] and each F 2
i is an L/W -tight

spanning tree in G/W . Then we can simply set Fi = F 1
i ∪ F 2

i to obtain an L-tight

spanning tree in G for i = 1, . . . , k. Thus B =
⋃̇k

i=1Fi is an L-tight k-spanning tree
in G, concluding the proof of the claim. •

Using this claim, the solution to Problem 9 is the following. Pick an inclusionwise
minimal member W of L and solve the problem of blocking all k-spanning trees in
G[W ] (as described after Theorem 6) to get a candidate H1. Then recursively solve the
problem of blocking L/W -tight k-spanning trees in G/W ; let the minimum cardinality
transversal be H2. Finally, output the smaller of H1 and H2.

As an open problem we pose the following question: can we solve Problem 1 in
polynomial time if c is uniform but w is not, that is, given a graph G = (V,E), a
positive integer k and w : E → R+, can we determine min{w(H) : H ⊆ E, G − H
does not admit a k-spanning tree }? We do not know how to solve this problem even
for fixed k, e.g. k = 2.
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2.1 A detour: blocking k-edge-connectivity

The weighted blocking problem of k-spanning trees for k = 1 (that is, Problem 1
for c ≡ 0 and k = 1) is equivalent to the minimum weight cut problem: given a
graph G = (V,E) and w : E → R+, find min{w(H) : H ⊆ E, G − H is not
connected}. This problem has another extension for larger k, namely the following
k-edge-connectivity blocking problem.

Problem 11 (Blocking global k-edge-connectivity). Given a graph G = (V,E) and
w : E → R+, find min{w(H) : H ⊆ E, G−H is not k-edge-connected}.

This fits in our framework by defining F as the family of all k-edge-connected
spanning subgraphs of G. The problem is related to the uniform cost versions of both
Problems 1 and 3. One important difference is that the structure of k-edge-connected
subgraphs is much more complicated than the other structures considered in this
paper – in particular, it is NP-hard to find a minimum cardinality 2-edge-connected
spanning subgraph. In light of this, it is remarkable that while Problem 3 with c ≡ 0
is NP-complete (see Theorem 23), this problem is solvable in polynomial time.

Theorem 12. Problem 11 is polynomial time solvable.

Proof. The algorithm is analogous to the algorithm for connectivity interdiction de-
veloped by Zenklusen [20]. Let e1, e2, . . . , em be the enumeration of the edges ordered
by increasing weight (where ties can be resolved arbitrarily), and let Ei = {e1, . . . , ei}.
For every i ∈ [m], we solve the following problem: find min{w(δG(Z)∩Ei) : ∅ 6= Z (
V , |δG(Z) \ Ei| ≤ k − 1}. This is a bicriteria minimum cut problem, that can be
solved in polynomial time using the method of Armon and Zwick [1]. Let ` ∈ [m]
be the index for which the minimum is the smallest, and let Z be the core of the
corresponding cut. We claim that H = δG(Z) ∩ E` is the optimal solution of the
blocking problem. On one hand, removing H results in a graph that is not k-edge-
connected because |δG(Z) \ H| ≤ k − 1. On the other hand, if H ′ is an optimal
solution of the blocking problem, then there is a subset Z ′ such that H ′ contains
the dG(Z ′) − k + 1 edges with the smallest weight from δG(Z ′). We can thus as-
sume that H ′ = δG(Z ′) ∩ Ei for some i, and |δG(Z ′) \ Ei| ≤ k − 1. It follows that
w(H ′) = w(δG(Z ′) ∩ Ei) ≥ w(δG(Z) ∩ E`) = w(H), so H is also optimal.

The directed counterpart of Problem 11 turns out to be NP-complete.

Problem 13 (Blocking global k-arc-connectivity). Given a digraph D = (V,A), w :
E → R+ and a positive integer k, find min{w(H) : H ⊆ A, D − H is not k-arc-
connected}.

Theorem 14. Problem 13 is NP-complete.

The proof of this theorem will be given later, together with the proof of Theorem
23. Note that a simple brute force algorithm can solve Problem 13 in polynomial time
if k is not part of the input.

EGRES Technical Report No. 2017-07



Section 3. Blocking optimal k-arborescences 9

3 Blocking optimal k-arborescences

Problem 2 for k = 1 was solved in [4]. For w ≡ 1, an algorithm solving Problem
2 was given in [2] that has polynomial running time if k is fixed. If both w and c
are uniform, then the problem is polynomially solvable even if k is part of the input
[3]. Furthermore, it was observed in [3] that for uniform c and fixed k the problem
is solvable in polynomial time (with a simple brute force technique). In this light it
is somewhat surprising that Problem 2 is NP-complete for c ≡ 0, if k is part of the
input.

Theorem 15. Problem 2 is NP-complete in the special case c ≡ 0.

The proof of this theorem will be given later, together with the proof of Theorem
23.

4 Blocking optimal k-braids

Given a digraph D = (V,A), s, t ∈ V , k ∈ Z+ and a cost function c : A → R+, the
following theorem characterizes optimal directed k-braids.

Theorem 16 (Ford and Fulkerson [6]). The minimum cost of a directed k-braid from
s to t is equal to

max
{
kπ(t) +

∑
[cπ(uv) : uv ∈ A, cπ(uv) < 0] : π ∈ RV

+, π(s) = 0
}
, (1)

where cπ(uv) = c(uv)− π(v) + π(u) for every arc uv ∈ A.

Corollary 17. We can find in polynomial time a partition A = A−∪A0∪A+ so that
a k-braid F ⊆ A is optimal if and only if A− ⊆ F ⊆ A− A+.

Proof. Choose an optimal solution π∗ of (1) and let A− = {uv ∈ A : cπ∗(uv) < 0},
A0 = {uv ∈ A : cπ∗(uv) = 0}, and A+ = {uv ∈ A : cπ∗(uv) > 0}. Note that π∗ and
thus A−, A0, A+ can be found in polynomial time (see eg. [8, Theorem 3.6.1]). The
complementary slackness conditions imply that a k-braid F ⊆ A is optimal if and
only if A− ⊆ F ⊆ A− A+.

4.1 Relationship between the directed and the undirected
problems

It is an easy observation that inclusionwise minimal directed k-braids do not contain
directed cycles. In order to deal with the undirected case, we need a similar statement
on inclusionwise minimal transversals of optimal directed k-braids.

Lemma 18. Given a digraph D = (V,A), s, t ∈ V , k ∈ Z+ and a cost function
c : A → R+, if H ⊆ A is an inclusionwise minimal arc set that intersects every
optimal k-braid, then H does not contain a directed cycle.
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Proof. Suppose, for contradiction, that there exists a directed cycle C = {f1, . . . , f`}
in H. By the minimality of H, there exists a c-optimal k-braid Bi with Bi∩H = {fi}
for i = 1, . . . , `. Let B = ∪`i=1Bi − C and define a capacity function g : B → Z+ by
setting g(f) = |{i : f ∈ Bi}|. Note that g(f) ≤ ` for every arc f ∈ B.

We claim that we can pack ` k-braids B′1, . . . , B
′
` in B under the capacities. Indeed,

it is known (see e.g. [17, (13.12)]) that the convex hull P of incidence vectors of those
subsets of B that contain k arc-disjoint s− t paths is determined by

0 ≤ x(a) ≤ 1 for each a ∈ B,

x(Q) ≥ k for each s− t cut Q.

By a result of L. E. Trotter [17, Theorem 13.8], the polytope P described by these
inequalities has the so-called integer decomposition property, meaning that for each
` ∈ Z+, any integer vector x ∈ ` · P is the sum of ` integer vectors in P . Clearly,
g ∈ ` · P , hence the existence of B′1, . . . , B

′
` follows.

By the optimality of the Bis,
∑`

i=1 c(Bi) = c(C) +
∑`

i=1 c(B
′
i) ≥

∑`
i=1 c(B

′
i) ≥∑`

i=1 c(Bi). Thus equality must hold throughout and so B′i is c-optimal for i =
1, . . . , `, contradicting the assumption that H is a blocking arc-set.

Now we turn to the problem of blocking undirected optimal k-braids.

Theorem 19. Problem 3 can be reduced to Problem 4 in polynomial time.

Proof. Consider an instance of Problem 3 given by a graph G = (V,E) and cost
and weight functions c, w : E → R+. We define a digraph G◦ = (V,E◦) and cost and
weight functions c◦, w◦ : E◦ → R+ as follows. For each edge e = uv of G, add a pair of
symmetric arcs e′ = −→uv and e′′ = −→vu to E◦ with cost c◦(e′) = c◦(e′′) = c(e) and weight
w◦(e′) = w◦(e′′) = w(e) . Let τ = min{w(H) : H ⊆ E,H intersects every c-optimal
k-braid from s to t in G} be the optimum in G, while τ ◦ = min{w◦(H) : H ⊆ E◦, H
intersects every c◦-optimal k-braid from s to t in G◦} be the optimum in G◦. The
proof is completed by the following claim.

Claim 20. τ = τ ◦. Moreover, an optimal blocking set in G◦ can be transformed to
an optimal blocking set in G.

Proof: Let H◦ ⊆ E◦ be an optimal blocking set in G◦. Let H = {uv ∈ E : uv
or vu ∈ H◦}. Clearly, H covers every c-optimal k-braid in G and w(H) ≤ w◦(H◦),
hence τ ≤ τ ◦ (in fact, w(H) = w◦(H◦) by Lemma 18, if H◦ is also an inclusionwise
minimal solution).

To see the other direction, take an optimal blocking set H ⊆ E in G. Let H◦ =
{−→uv,−→vu ∈ E◦ : uv ∈ H}. Now H◦ covers every c◦-optimal k-braid in G◦. Note that
w◦(H◦) = 2w(H) = 2τ as H◦ contains both e′ and e′′ for each e ∈ H. However, by
Lemma 18, H◦ contains a minimal blocking set that contains at most one of e′ and e′′

for each e ∈ H. This shows τ ≥ τ ◦, thus concluding the proof of the claim. •
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4.2 Uniform weight

Based on Theorem 16, first we show how the minimum cardinality blocking of c-
optimal directed k-braids can be solved in polynomial time. The undirected case then
follows from the directed one.

Theorem 21. Problem 4 is solvable in polynomial time in the special case w ≡ 1.

Proof. Find the 3-partition A− ∪ A0 ∪ A+ of A as in Corollary 17. By the corollary,
the following algorithm solves the problem.

Case 1: A− 6= ∅ In this case the optimal k-braids can be blocked by a single arc
from A−.

Case 2: A− = ∅ In this case an optimal solution consists of all-but-(k − 1) arcs
from a minimum s − t cut in D0 = (V,A0). That is, the minimum number of arcs
blocking all c-optimal directed k-braids is

min{%A0(Z)− (k − 1) : t ∈ Z ⊆ V − s}.

This concludes the proof of the theorem.

Theorems 19 and 21 together imply the following corollary.

Corollary 22. Problem 3 can be solved in polynomial time if w ≡ 1.

4.3 NP-completeness of the weighted versions

In contrast to the polynomial-time solvability of the minimum cardinality blocking
problem of minimum cost k-braids, the weighted blocking problems for k-braids are
NP-complete even if c ≡ 0.

Theorem 23. Problems 3 and 4 are both NP-complete in the special case c ≡ 0.

Proof of Theorems 14, 15 and 23: Clearly, the decision versions of the problems
are in NP, therefore we will only concentrate on proving their completeness.

Given a bipartite graph G0 = (S, T,E0) with |S| = |T | = k, consider the following
constructions (see Figure 1).

1. Let a, b /∈ S ∪T be new nodes and let V = S ∪T ∪{a, b}. Let G = (V,E) where
E = E0 ∪ {as : s ∈ S} ∪ {tb : t ∈ T}.

2. Let D1 = (V,A1) be the digraph obtained from G (defined above) by orienting

each edge “from a to b” – that is, A1 = {−→as : s ∈ S}∪{−→st : st ∈ E0}∪{
−→
tb : t ∈ T}

.

3. Let D2 = (V,A2) be obtained from D1 by adding k parallel arcs from b to every
v ∈ S ∪ T .
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T

S

(a) Original graph

T

S

a

b

(b) Graph G

T

S

a

b

(c) Digraph D1

Figure 1: Constructions for G and D1

4. Let D3 = (V,A3) be obtained from D2 by adding k parallel arcs from every
v ∈ S ∪ T to a.

Claim 24. The following statements are equivalent.

(i) G0 admits a perfect matching.

(ii) There is an undirected k-braid from a to b in G.

(iii) There is a directed k-braid from a to b in D1.

(iv) There is an a-rooted k-arborescence in D2.

(v) D3 is k-arc-connected.

Proof: It is quite straightforward how (i) implies all of the other items in the list
above (see the thick edges in Figure 1 for an illustration). On the other hand, if G0

does not have a perfect matching, then by Hall’s theorem there is a subset X ⊆ S
with |ΓG0(X)| < |X|, and then the set a+X + ΓG0(X) defines a cut that shows that
neither of (ii)-(v) can hold. •

The proof of the theorem can be finished as follows. We will reduce the following
problem.

Problem 25 (Blocking Bipartite Matchings). Given a bipartite graph G0 = (S, T,E0),
find min{|H| : H ⊆ E0, G0 −H does not have a perfect matching}.

It is known (see e.g. [11]) that Problem 25 is NP-complete. Given an instance
G0 = (S, T,E0) of this problem, we construct the graph G and digraphs D1, D2 and
D3 as above, and set the weights as follows. The (directed or undirected) edges st ∈ E0

have weight 1, while any other edge has a large weight M (for example M = |E0|+ 1
suffices). Thus we have defined an instance of Problem 3 with input G, an instance
of Problem 4 with input D1 and an instance of Problem 2 with input D2: in all three
cases we have also defined weights for edges/arcs, and the cost function is defined
to be zero in all three cases. We have also defined an instance of Problem 13 with
digraph D3 and the given weight function. Note that k = |S| = |T | in all the defined
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problems. Then the problem of Blocking Bipartite Matchings in G0 has a solution of
size m if and only if either of the defined weighted blocking problems has a solution
of total weight at most m. 2

Note that both Problems 3 and 4 can be solved in polynomial time if c ≡ 0 and k
is fixed, using a brute-force search technique, similar to the one used in [3] for solving
Problem 2 for fixed k and c ≡ 0.
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