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Globally Rigid Circuits of the Direction-Length
Rigidity Matroid

Bill Jackson* and Tibor Jordan**

Abstract

A two-dimensional mixed framework is a pair (G, p), where G = (V; D, L) is
a graph whose edges are labeled as ‘direction’ or ‘length’ edges, and p is a map
from V to R2. The label of an edge uv represents a direction or length constraint
between p(u) and p(v). The framework (G,p) is called globally rigid if every
framework (G, ¢) in which the direction or length between the endvertices of
corresponding edges is the same as in (G, p), can be obtained from (G,p) by a
translation and, possibly, a dilation by —1.

We characterize the generically globally rigid mixed frameworks (G,p) for
which the edge set of G is a circuit in the associated direction-length rigidity
matroid. We show that such a framework is globally rigid if and only if each
2-separation S of G is ‘direction balanced’, i.e. each ‘side’ of S contains a
direction edge. Our result is based on a new inductive construction for the
family of edge-labeled graphs which satisfy these hypotheses. We also settle a
related open problem posed by Servatius and Whiteley concerning the inductive
construction of circuits in the direction-length rigidity matroid.

1 Introduction

Consider a configuration of points py, po, ..., p, in R? together with a set of constraints
which fix the direction or the length between some pairs p;, p;. A basic question is
whether the configuration, with the given constraints, is locally or globally unique,
up to ‘congruence’. Results of this type have applications in CAD [16], localization
of sensor networks [4], and in determining molecular conformation [8].

We model the configuration and constraints as a ‘mixed framework’. A mized graph
G = (V; D, L) is an undirected graph together with a labeling (or bipartition) DUL of
its edge set. We refer to edges in D as direction edges and edges in L as length edges. A
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Figure 1: Two equivalent but non-congruent realizations of a mixed graph. We use
solid or dashed lines to indicate edges with length or direction labels, respectively.

mized framework is a pair (G, p), where G = (V; D, L) is a mixed graph and p is a map
p:V — R We say that (G, p) is a realization of G in R?. Two mixed frameworks
(G,p) and (@G, q) are mized-equivalent (or simply equivalent) if (i) p(u) — p(v) is a
scalar multiple of ¢(u) — ¢q(v) for all uv € D and (ii) ||p(u) — p(v)|| = ||q(u) — q(v)]]
for all uv € L, where ||.|| denotes the Euclidean norm in R*. We say that (G, p) is a
length framework if D = (), is a direction framework if L = (), and is a pure framework
if it is either a length or direction framework. If two pure frameworks satisfy (i) or
(ii) then we say that they are direction- or length-equivalent, respectively.

The mixed frameworks (G, p) and (G, q) are mized-congruent (or simply congruent)
if (i) p(u) —p(v) is a scalar multiple of ¢(u) —g(v) and (i) [[p(u) —p(v)|| = [[g(u) —q(v)]|
for all u,v € V. We can define direction-congruence and length-congruence in a similar
way for pure frameworks by imposing only (i) or (ii) above.

Note that if d = 2 then saying that two mixed frameworks are congruent is equiva-
lent to saying that one can be obtained from the other by a translation and a rotation
by 0 or 180 degrees about a point. Similarly, if two pure frameworks are direction-
congruent (length-conguent) then one can be obtained from the other by a translation
and a dilation (respectively, translation and/or rotation and/or reflection).

The mixed framework (G, p) is globally mized-rigid in R? if every framework which is
equivalent to (G, p) is congruent to (G, p). Global direction-rigidity and global length-
rigidity of pure frameworks are defined analogously. It is a hard problem to decide if a
given length framework is globally length-rigid. Indeed Saxe [15] has shown that this
problem is NP-hard even for 1-dimensional frameworks. The problem becomes more
tractable, however, if we assume that there are no algebraic dependencies between the
coordinates of the points of the framework.

A framework (G,p) is said to be generic if the set containing the coordinates of
all its points is algebraically independent over the rationals. The characterization
of d-dimensional generically globally rigid pure frameworks is known for all d when
(G,p) is a direction framework, and for d < 2 when (G, p) is a length framework. A
closely related notion, which plays a key role in these characterizations is rigidity. The
mixed framework (G, p) is mized-rigid if there exists an € > 0 such that every mixed
framework (G, ¢) which is equivalent to (G, p) and satisfies ||p(v) — g(v)|| < € for all
v € V, is congruent to (G,p). Direction- and length-rigidity of pure frameworks are
defined analogously.

We assume henceforth that d = 2 unless specified otherwise. One can develop a
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Section 1. Introduction 3

rigidity theory for mixed frameworks in much the same way as for pure frameworks.
For (z,y) € R? let (z,y)" = (y, —x). The direction-length rigidity matriz of a mixed
framework (G, p) is the matrix R(G,p) of size (|D]| + |L|) x 2|V|, where, for each
edge uv € D U L, in the row corresponding to uw, the entries in the two columns
corresponding to the vertex w are given by: (p(u) — p(v))t if uv € D and w =
uw; —(p(u) — p(v))*t if uwv € D and w = v; (p(u) — p(v)) if wv € L and w = u;
—(p(u) — p(v)) if uv € L and w = v; (0,0) if w ¢ {u,v}. The rigidity matrix of
(G, p) defines the direction-length rigidity matroid of (G, p) on the ground set D U L
by linear independence of the rows of the rigidity matrix. The framework is said
to be independent if the rows of R(G,p) are linearly independent. Any two generic
frameworks (G,p) and (G,p') have the same rigidity matroid. We call this the 2-
dimensional direction-length rigidity matroid R(G) = (D U L,r) of the mixed graph
G. We denote the rank of R(G) by r(G). The mixed graph G is said to be mized
independent, or mized rigid, if r(G) = |D| + |L|, or r(G) = 2|V| — 2, respectively. The
following lemma relates this linear algebraic definition of the rigidity of mixed graphs
to the previous geometric definition for mixed frameworks.

Lemma 1.1. [11] Let (G, p) be a mized framework. If G is mized rigid then (G, p) is
mized rigid. Furthermore, if (G, p) is generic, then (G,p) is mized rigid if and only
if G is maized rigid.

Direction and length rigidity matrices and matroids can be defined similarly for
pure frameworks, as can direction and length independence and rigidity of (unlabelled)
graphs, see [17]. Henceforth, we will suppress the prefixes mixed, direction, and length
when they are clear from the context.

Length frameworks correspond to the well studied bar-and-joint frameworks, for
which the characterization of generic rigidity and generic global rigidity are known up
to dimension two. (We refer the reader to [6, 17] for a detailed survey of the rigidity
of d-dimensional length frameworks.) A graph is length-rigid in R if and only if it is
connected. The characterization of length-rigid graphs in R? is based on the following
characterization of length-independent graphs due to Laman. For G = (V, F) a graph
and X C V, let E(X) denote the set, and i(X) the number, of edges in G[X], that
is, in the subgraph induced by X in G.

Theorem 1.2. [13] A graph G = (V, E) is length independent if and only if i(X) <
2| X| =3 forall X CV with | X| > 2.

Laman’s theorem was extended to give a characterization of rigid graphs by Lovéasz
and Yemini [14].

A 1-dimensional generic length-framework (G, p) is globally length-rigid if and only
if either GG is the complete graph on two vertices or GG is 2-connected. The charac-
terization for d = 2 is as follows. We say that a graph G = (V, E) is redundantly
length-rigid if G — e is length-rigid for all edges e of G. The graph G is k-connected
it |V| > k+1and G — X is connected for all X C V with | X| <k — 1.

Theorem 1.3. /3, 10] Let (G, p) be a 2-dimensional generic length-framework. Then
(G,p) is globally rigid if and only if either G is a complete graph on two or three
vertices, or G is 3-connected and redundantly rigid in R?.
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1.1 Main results 4

The linearity of the direction constraints in a direction-framework (G, p) implies
that direction-rigidity and global direction-rigidity are equivalent and are determined
entirely by the graph G for all direction frameworks (G, p), not just generic frame-
works. Direction-independence - and (global) rigidity - were characterized by Whiteley
[17]. For the special case of 2-dimensional frameworks, there is a simple transforma-
tion which shows that direction-independence and (global) rigidity are equivalent to
length-independence and rigidity. In particular, Theorem 1.2 gives

Theorem 1.4. [17] A graph G = (V, E) is direction independent if and only if i(X) <
2|X| =3 forall X CV with | X| > 2.

Similarly the above mentioned characterization of length-rigid graphs due to Lovasz
and Yemini also characterizes (globally) direction-rigid frameworks.
Independent mixed graphs were characterized by Servatius and Whiteley.

Theorem 1.5. [16/ A mized graph G = (V; D, L) is mized independent if and only
if, for all X C'V with | X| > 2,

i(X) < 2|X| — 2 when Ep(X) £ 0 # Ep(X), (1)

and
i(X) < 2|X| — 3 otherwise. (2)

It is straightforward to use this result to obtain a characterization of rigid mixed
graphs. The problem of characterizing when a generic mixed framework (G,p) is
globally rigid remains open, however. We give a characterization for globally rigid
mixed frameworks (G,p) in which the edge set is a circuit in the direction-length
rigidity matroid. This complements the results on generically globally rigid length-
frameworks whose edge set is a circuit in the length-rigidity matroid [1], and may
serve as a building block to a complete characterization.

1.1 Main results

We first give necessary conditions for global mixed rigidity. We need the following
concept. Let G be a 2-connected graph. A 2-separation of G is a pair of subgraphs
G, Gy such that G = G1UG,, |[V(Gh)NV(Gy)| =2 and V(Gy) -V (Gy) # 0 # V(Gy)—
V(G1). When G = (V; D, L) is a mixed graph, we say that a 2-separation (G1,Gs)
is direction-balanced, respectively length-balanced, if both G; and G4 contain an edge
in D, respectively L. We say that (G, G2) is balanced if it is both direction-balanced
and length-balanced. A 2-separation which is not (direction-, length-) balanced is said
to be (direction-, length-) unbalanced. We say that G is (direction-, length-) balanced
if all its 2-separations are (direction-, length-) balanced, see Figure 2.

Lemma 1.6. Let (G,p) be a generic realization of a mized graph G = (V; D, L).
Suppose that (G, p) is globally rigid. Then

(a) G is rigid,

(b) G is 2-connected,

(¢) G is direction balanced,

(d) G has no non-trivial edge-cut consisting of two direction edges.
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1.1 Main results 5

Figure 2: A mixed graph with a direction unbalanced 2-separation.

Proof: The necessity of (a) follows from the definitions of mixed rigidity and global
rigidity and Lemma 1.1.

To prove (b) suppose that G has a cut-vertex v and let H be a component of G — v.
Applying a dilation by -1 centred on p(v) to the points p(x), x € V(H), gives an
equivalent but non-congruent realization of G.

For the proof of (c) let (Hy, Hs) be a direction-unbalanced 2-separation of G, where
H, is length pure and V(H,) N V(Hy) = {u,v}. Let (G,q) be the realization of
G obtained by reflecting p(z) in the line through p(u),p(v) for each z € V(H,).
Then (G, q) is equivalent to (G,p) but ||p(z) — p(y)|| # |l¢(z) — q(y)|| for all z €
V(Hy) — {u,v}, y € V(H;) — {u,v}. Thus (G, p) is not globally rigid.

Finally, suppose that G — {e, f} has two connected components H;, H, each with
at least two vertices, for some e, f € D. Let e = uv, f = wt and let ) be the point
of intersection of the lines through p(u),p(v) and p(w), p(t), respectively. Since p is
generic, () exists. Applying a dilation by —1 with center @ to p(z), x € V(Hy), yields
an equivalent but non-congruent realization of G. This proves (d) )

Note that there exist mixed frameworks satisfying all conditions of Lemma 1.6 which
are not globally rigid, see Figure 1.

Lemma 1.6(a) implies that mixed rigidity is a necessary condition for global mixed-
rigidity. Unlike in length-frameworks, however, redundant mixed rigidity is not a
necessary condition for global mixed-rigidity. The fact that rigidity is equivalent to
global rigidity for direction frameworks implies that a generic minimally rigid mixed-
framework, with exactly one length edge, is globally rigid. Such a mixed framework
is clearly not redundantly mixed rigid.

We next describe some sufficient conditions for global mixed rigidity. We use the
following operations. A 0-extension of a mixed graph G = (V; D, L) adds a new vertex
v and new edges vu, vw for vertices u, w € V with the proviso that, if u = w, then the
two edges from v to u are of different type. A 1-extension (on edge uw and vertex z)
for GG deletes an edge uw and adds a new vertex v and new edges vu, vw, vz for some
vertex z € V', with the provisos that at least one of the new edges has the same type as
the deleted edge and, if z = u, then the two edges from v to u are of different type. We
showed in [11] that 1-extension preserves global rigidity in redundantly rigid generic
mixed frameworks. (See [12] for a similar result concerning length frameworks.)

Theorem 1.7. [11] Let (G, p) and (H, q) be generic mized frameworks with |V (H)| >
3. Suppose that (H,q) is globally rigid and that G can be obtained from H by a 1-
extension on an edge uw. Suppose further that H — uw is rigid, and p(x) = q(x) for
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1.1 Main results 6

Figure 3: The two mixed circuits on three vertices. These graphs, denoted by K
and K , are the smallest (mixed) circuits of the direction-length rigidity matroid.

all z € V(H). Then (G,p) is globally rigid.
We also showed that a special kind of 0-extension preserves global rigidity.

Theorem 1.8. [11] Let (G, p) and (H, q) be generic mized frameworks with |V (H)| >
3. Suppose that G can be obtained from H by a 0-extension which adds a vertex v

incident to two direction edges. Suppose further that p(z) = q(x) for all x € V(H).
Then (G, p) is globally rigid if and only if (H,q) is globally rigid.

Note that if G is obtained by a 0-extension then GG cannot be redundantly mixed rigid.

We will use Theorems 1.7 and 1.8 to show that a special family of generic mixed
frameworks are globally rigid. A mixed graph G = (V; D, L) is a circuit if D U L
is a circuit in the direction-length rigidity matroid. The circuit G is a mized circuit
if D # () # L and otherwise it is a pure circuit, see Figure 3. Theorem 1.5 implies
that mixed circuits are redundantly rigid mixed graphs with |D|+ |L| = 2|V| — 1, see
Section 3.

We will need another operation on mixed graphs. Suppose that G; = (V4, Fy) and
G1 = (Vy, Ey) are graphs with ViNV, = {u, v} and EyNE; = {uv}. Then we say that
the graph G = (G —uv)U(Gy —uwv) is a 2-sum of G1 and G5, and write G = G ®,Gs.
When G; = (V;; D;, L;) is a mixed graph for each i € {1,2} and uv has the same type
in both Gy and Gy, their 2-sum is the mixed graph (V3 U Va; (Dy U Dy) — {uv}, (L U
L) — {uo}).

We first characterize mixed circuits. (This solves an open problem raised by Ser-
vatius and Whiteley in [16].)

Theorem 1.9. Let G be a mized circuit. Then G can be obtained from Ky or Ky
by a sequence of 1-extensions and 2-sums with pure K,'s.

We next obtain a refined characterization for direction balanced mixed circuits.

Theorem 1.10. Let G = (V; D, L) be a mized graph. Then G is a direction-balanced
mized circuit if and only if G can be obtained from K or K; by 1-extensions and
2-sums with direction-pure K, '’s.

Theorems 1.7 and 1.8 imply that the operations of 1-extension and 2-sum with a
direction-pure K4 preserve global mixed-rigidity. We use this and the fact that K,
and K5 are both generically globally rigid to obtain the following characterization of
globally rigid mixed circuits.

Theorem 1.11. Let (G, p) be a generic realization of a mized circuit. Then (G, p) is
globally rigid iof and only if G is direction balanced.
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Section 2. Independent graphs and critical sets 7

The organization of the paper is as follows. In Section 2 we prove a number of
preliminary lemmas on the structure of independent mixed graphs. Mixed circuits
are introduced in Section 3. The inductive constructions for mixed circuits and di-
rection balanced mixed circuits are obtained in Sections 4 and 5, respectively. The
characterization of globally rigid mixed circuits is deduced in Section 6, while Section
7 contains additional remarks on algorithmic aspects and possible extensions.

We close this section with a characterization of global rigidity for a special kind of
d-dimensional generic mixed frameworks.

Theorem 1.12. Let G = (V; D, L) be a mized graph in which all pairs of adjacent ver-
tices are connected by both a length and a direction edge, and (G, p) be a d-dimensional
generic realization of G. Then (G, p) is globally rigid if and only if G is 2-connected.

Proof: Necessity follows from (the d-dimensional analogue of) Lemma 1.6(b). To
verify sufficiency suppose that G is 2-connected. Let (G, q) be a realization of G
which is equivalent to (G, p) and u,v be adjacent vertices of G. By applying a suit-
able translation and dilation by —1 to (G,q), if necessary, we may suppose that
p(u) = q(u) and p(v) = q(v). Let p = (p1,pa,...,pa) and ¢ = (g1, G2, ., qa). Since
(G,p) and (G, q) are equivalent, and all pairs of adjacent vertices are connected by
both a length and a direction edge, we have p(x) — p(y) = +(q¢(z) — q(y)) for all
adjacent z,y € V. Hence p;(z) — pi(y) = £(¢:(x) — ¢;(y)) for all adjacent xz,y € V,
and (G, p;) and (G, ¢;) are length-equivalent 1-dimensional length-frameworks. Since
G is 2-connected and (G, p;) is generic, (G, p;) is globally length-rigid in 1-dimensional
space. Since p;(u) = ¢;(u) and p;(v) = ¢;(v), we must have p;(x) = ¢;(z) for allz € V.
This holds for all 1 < i < d and hence p(z) = ¢q(z) for all z € V. o

2 Independent graphs and critical sets

Let G = (V; D, L) be an independent mixed graph and X C V with |X| > 2. Then
X is mized critical if i(X) = 2|X| — 2, direction critical if ip(X) = 2|X]| — 3 and
EL(X) =0, and length critical if i;,(X) = 2|X| — 3 and Ep(X) = 0. We say that X
is pure critical if X is either direction critical or length critical, and X is critical if X
is either mixed critical or pure critical.

We shall need the following equalities, which are easy to check by counting the
contribution of an edge to each of their two sides.

Lemma 2.1. Let G be a graph and X, Y C V(G). Then
(X)) +i(Y)+d(X,Y)=iXUY)+i(XNY). (3)
Lemma 2.2. Let G be a graph and X,Y,Z C V(G). Then

iX)+i(Y)+i(Z2)+d(X,Y,Z) = i(XUYUZ)+i(XNY)+i(XNZ)+
WYNZ)—i(XNnYn2z).
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Section 2. Independent graphs and critical sets 8

Given a graph G = (V, F) and two disjoint subsets X, Y C V, we use d(X,Y) to
denote the number of edges from X to Y. Let d(X) =d(X,V — X). When X = {z}
we abreviate d(X) to d(z) and refer to d(z) as the degree of x.

Lemma 2.3. Let G = (V; D, L) be an independent mized graph.

(a) If X,Y are mized critical sets with X NY # () then X NY and X UY are both
mized-critical and d(X,Y) =0,

(b) If X, Y are direction (respectively length) critical sets with | X NY| > 2 then either
(1) d(X,Y) =0 and X NY and X UY are both direction (respectively length) critical,
or

(1) d(X,Y) =1, XUY is mized critical, and ip(X UY) = 2| X UY| =3 (respectively
in(XUY)=2|XUY|—3) holds.

(¢) If X is mized critical and Y is pure critical with | X NY| > 2 then X UY is mized
critical, X N'Y is pure critical and d(X,Y) = 0.

(d) If X is length critical and Y is direction critical with | X NY| > 2 then X UY s
mized critical, d(X,Y) =0, and | X NY|=2.

Proof: The Lemma follows easily from Theorem 1.5 and Lemma 2.1. For example,
we may verify (d) as follows.
21X =342V -3 = i(X)+i(Y)
= (XNY)+i(XUY)—-d(X,Y)
< 21XUY|-2—-d(X,Y)
21X +2)Y|=2(XNnY|-2-d(X,Y),
since (X NY)=0. Thus d(X,Y) =0, [ X NY| =2, and X UY is mixed critical. e

Lemma 2.4. Let G = (V; D, L) be an independent mized graph and let X,Y,Z be
critical sets satisfying | X NY | =Y NZ|=|ZNnX|=1and XNY NZ=1.

(a) If X is mized critical then Y, Z are both pure critical, X UY U Z is mized critical,
and d(X,Y,7Z) = 0.

(b) If X,Y, Z are direction (respectively length) critical then either

(1) d(X,Y,Z) =0 and X UY U Z is direction (respectively length) critical, or

(1)) d(X,Y,Z) =1, XUY UZ is mized critical, and ip(XUY UZ) =2|XUYUZ|-3
(respectively i, (X UY U Z) =2|XUY UZ| —3) holds.

Proof: (a) Since GG is independent and the sets X,Y, 7 are critical, Theorem 1.5
and Lemma 2.2 imply that 2| X| -2+ 2|Y| -3+ 2|7 =3 < i(X)+i(Y) +i(Z) =
I(XUYUZ)—dXUYUZ)<2(|XuYUZ|)-2—-d(XUuYUZ)=2(X+|Y|+
Z|-3) -2 d(XUYUZ)=2|X| 2+2]Y| 3+2|Z] 3 d(XUYUZ). Hence
d(X,Y,7) =0, X UY U Z is mixed critical, and Y, Z are both pure critical.

The proof of (b) is similar. o

The following lemma summarizes the connectivity properties of subgraphs induced
by critical sets. The definition of a k-separation for kK > 1 is analogous to that of
a 2-separation given before Lemma 1.6. A graph G = (V| F) is k-edge-connected if
G — F is connected for all F C F with |[F| <k — 1.
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Section 3. Circuits in the direction-length rigidity matroid 9

Lemma 2.5. Let G = (V; D, L) be an independent mized graph and let X CV be a
critical set. Then

(a) G| X] is 2-edge-connected unless X is a pure critical set, | X| =2, and G[X] is an
edge.

(b) If (J1,.Jo) is a 1-separation in G[X| then X is mized critical and V (Jy), V(.J5)
are also mized critical.

Proof: Let H = G[X] and suppose that H can be disconnected by deleting less than
two edges. Then there is a set ) # A C X with dy(A) < 1. Hence

21X =3 <i(X) <i(A)+i(X —A)+1 <24 —242|X — A -2+ 1=2[X]|-3.

Thus equality must hold everywhere, which implies that X is pure critical and |A| =
1 =|X — A|. This proves (a).

Now consider a 1-separation in H and let V; = V/(J;), i = 1,2. Suppose that X is
pure critical. Then

2|1 X| -3 =i(X)=i(V}) +i(Va) <2|Vi| — 3+ 2|V — 3 =2|V| — 4,

a contradiction. Thus X is mixed critical. The previous inequality, when applied to
a mixed critical set X, gives that V; is also mixed critical for s = 1, 2. This proves (b).

3 Circuits in the direction-length rigidity matroid

We can use Theorem 1.5 to determine when a mixed graph is a circuit.

Lemma 3.1. A mized graph G = (V; D, L) is a mized circuit if and only if
(a) D+ L[ = 2]V] — 1,

(b) i(X) <2|X|—=2 forall X CV with2 < |X|<|V|—=1 and

(¢)ip(X) <2|X|—=3andiy(X) < 2/X|—3 foral X CV with | X| > 2.

Lemma 3.2. A mized graph G = (V; D, L) is a pure circuit if and only if
(a) |D| +|L| =2|V|—2 and either D =0 or L =0 and
(b) i(X) <2|X|—=3 forall X CV with2 < |X| < |V|-1.

We say that a pure circuit is a direction circuit if L = () and a length circuit if D = ().

It follows that, if G is a circuit, then the graph G obtained from G by interchanging
the direction and length edges is also a circuit. In addition, if G is a mixed circuit
then |D| > 2 and |L| > 2. The smallest mixed circuits, denoted by K; and Kj , are
obtained from a cycle on three direction (respectively length) edges by adding two
non-parallel length (respectively direction) edges, see Figure 3.

Lemma 3.3. Let G = (V; D, L) be a mized circuit. Then G is 3-edge-connected and
2-connected.
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Section 3. Circuits in the direction-length rigidity matroid 10

Proof: Consider a bipartition X UY =V X NY =0 of V with [ X[, |Y]| > 2. We
have |[DUL| =i(X)+i(Y)+d(X) <2[X|—-242]Y|[-24d(X) =2|V|—-4+d(X) =
E| — 3+ d(X). This implies d(X) > 3. A similar argument shows that G is 2-
connected. .

Let V3 = {v € V : d(v) = 3} denote the set of vertices of degree three in a mixed
graph G = (V; D, L). For convenience, vertices of degree three will be called nodes.
We call G[V3] the node subgraph of G. A node of G with degree at most one (exactly
two, exactly three) in the node subgraph of G is called a leaf node (series node,
branching node, respectively). A node v € V' is pure if all edges incident with v are of
the same type. Otherwise v is mized.

Lemma 3.4. Let G = (V; D, L) be a mized circuit. Then G[V3] is a forest.

Proof: Suppose that C is a cycle in the node subgraph of G. If V(C) = V(G) then
each vertex of G is a node. Thus 4|V |—2 = 2|DUL| = 3|V, which implies |V'| = 2 and
|E| = 3, a contradiction. (Since each circuit on two vertices is pure and has two edges.)
So we may assume that X =V —V/(C) # (). Since each vertex of C'is a node of G we
have i(V(C)) + d(V(C)) < 2|V(C)|. Thus i(X) =2|V| -1 —4(V(C)) —d(V(C)) >
20V =1 =2/V(C)|=2(]V| = [V(C)]) =1 =2|X]| — 1, a contradiction. .

Lemma 3.5. Let G = (V; D, L) be a mized circuit and let X C V' be a mized critical
set. Then there is a node of G in' V — X.

Proof: Let Y = V — X. Since G is 3-edge-connected, we have d(Y) > 3. Since
i(Y)+dY)=|DUL|—i(X)=2|V|—-1-2|X|[+2=2]Y|+1, we obtain

D dw) =2i(Y) +d(Y) =4Y]+2 - d(Y) <4y L

veY

This implies the lemma. °

It is straightforward to use Lemma 3.1 to deduce the following results on 1-extensions
and 2-sums of mixed circuits.

Lemma 3.6. Let G be a mized circuit and H be a 1-extension of G. Then H is a
mized circuit.

Lemma 3.7. Let G be a mized graph.

(a) Suppose G is the 2-sum of two mized graphs G and Go. If Gy is a mized circuit
and Gy 1s a pure circuit, then G is a mized circuit.

(b) Suppose G is a mized circuit and (Hy, Hy) is a 2-separation of G, where V(Hy) N
V(Hy) = {u,v} and Hy is pure. Let G; be obtained from H; by adding a new edge uv
of the same type as the edges of Hy. Then G is a mized circuit, Gy is a pure circuit,
G =Gy @y Gy, dg(u) > 4 and dg(v) > 4.

Our final result of this section restricts the ways in which two 2-separations in a
mixed circuit can ‘cross’.
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Lemma 3.8. Let G be a mized circuit and (Hy, Hy), (Hj, H}) be 2-separations of G.
Suppose that Hy is pure and V(H{)NV (H})) € V(Hy). Then V(H])NV (H)) C V(Hy).

Proof: Suppose the lemma is false. Then V(H;) NV (H}) contains exactly one vertex
of V(Hy) — V(Hs) and exactly one vertex of V/(Hy) — V(H;). Let X; = V(H;), Xy =
V(Hy)NV(H]) and X3 = V(Hy) NV (H)). Then E(G) = Eq(X1)UFEg(Xy)UEg(X3).
Since Hy is pure we have

[E(G)] < 2[X0] = 2) + (2[Xa| = 3) + (2[X3] = 3) = 2]V(G)| - 2.

This contradicts the fact that G is a mixed circuit. °

4 Admissible nodes

Let G = (V; D, L) be a mixed graph and v € V' be a node. The 1-reduction operation
at v on edges vu, vw deletes v and all edges incident with v, and adds a new edge uw.
(This operation is called splitting in [1, 10, 12].) The type of the new edge is arbitrary,
unless v is a pure node, in which case the type of uw must be the same as the type of
v. The graph obtained by the operation is denoted by G, or more simply G,. Note
that 1-reduction is the inverse operation to 1-extension. We say that the 1-reduction
G is a direction 1-reduction or a length 1-reduction according to the type of the new
edge uw.

When G is a mixed circuit, a 1-reduction is admissible if it results in a smaller mixed
circuit. A node v is admissible if G has an admissible 1-reduction at v. Otherwise v
is non-admissible. Examples of non-admissible nodes are given in Figures 5 and 6.

We will determine when a mixed circuit contains an admissible node. We need
the following four lemmas. The first characterizes when a 1-reduction at a node v
is non-admissible in terms of critical sets containing two neighbours of v. The next
three give information on the structure of families of critical sets containing pairs of
neighbours v.

Lemma 4.1. Let G be a mized circuit and let v be a node in G with edges vu,vw, vt
incident to v, u # w. Suppose that there is no admissible 1-reduction of G at v on
vu,vw. Then there erxists a mized critical set X in G — {v,t} with u,w € X or

there exists a direction critical set Y and a length critical set 7 with Y N7 = {u, w},
dY,Z)=0, and YU Z =V —v.

Proof: Let e; = uw be a direction edge and e; = uw be a length edge.

Since G — v + ¢4 is not a mixed circuit there exists either a mixed critical set X
in G —ov with {u,w} € X and X # V — v, or a direction critical set Y C V — v
with {u, w} C Y. Suppose the first alternative holds. Then ¢ ¢ X since otherwise we
would have i(X Uv) = 2|X +v| — 1 and |X + v| < |V]| — 1, contradicting the fact
that G is a mixed circuit. Thus X would be the required mixed critical set. Hence
we may assume that the first alternative does not hold. It follows that there exists a
direction critical set Y C V — v with {u,w} C Y. Since G — v + ¢; is not a mixed
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Figure 4: A strong flower and a weak flower on node v.

circuit, there also exists a length critical set Z in G — v with {u,w} C Z. Then
Y NZ| > 2 and Lemma 2.3(d) implies that Y U Z is mixed critical, Y N Z = {u, w},
and d(Y, Z) = 0. Since G is a mixed circuit and i((Y U Z) +v) =2[(YUZ) +v| -1,
we have Y U Z =V — v, as required. °

For a mixed graph G = (V; D, L) and X C V let N(X) denote the set of neighbours
of X (thatis, N(X):={v eV — X :uv € E for some u € X}).

Lemma 4.2. Let G = (V; D, L) be a mized circuit and v be a node of G with three
distinct neighbours u,w and t. Suppose that there exist mized critical sets X,Y in
G — v with {u,w} C X CV —{u,t} and {w,t} CY CV — {v,u}. Suppose further
that one of the following conditions hold:

(i) there exists a mized critical set Z in G — v with {u,t} CZ CV —{v,w};

(i) there exists a pure critical set Z in G — v with {u,t} C Z CV — {v}.

Then,

(a) XUY =XUZ=YUZ=V —u,

(b)) XNYNZ#D, and

(¢c)d(X,Y,Z)=0.

Proof: By Lemma 2.3(a), X NY and X UY are both mixed critical sets in G — v
and d(X,Y) = 0. Since N(v) € X UY, we must have X UY = V — v. Since
Z is critical, G[Z] is connected by Lemma 2.5. Thus X N Y N Z = () would imply
d(X,Y) > 1, contradicting Lemma 2.3(a). Hence X NY N Z # (). This implies
X NZ[,)YNZ| > 2 Thus Lemma 2.3(a),(c) gives XUZ =V —0, YUZ =V —u,
and d(X,7) =d(Y,Z) = 0. Therefore d(X,Y, Z) = 0 must also hold. o

A collection of three critical sets X, Y, Z satisfying the hypotheses of Lemma 4.2
with condition (i) (respectively condition (ii)) is called a strong (respectively weak)
flower on node v, see Figure 4.

Lemma 4.3. Let G = (V; D, L) be a mized circuit and v be a pure node of G with three
distinct neighbours w,w and t. Suppose that there exists a mized critical set X and
pure critical sets Y, Z of the same type as v in G — v with {u,w} C X CV — {v,t},
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Figure 5: A non-admissible mixed node v.

{w,t} CY CV —{v}, and {u,t} C Z CV —{v}. Then there is an unbalanced
2-separation in G.

Proof: First observe that if |[Y'NZ| > 2 then Lemma 2.3(b) implies that G[(YUZ)+v]
contains a pure circuit, a contradiction. Thus |[Y'NZ| = 1. Next suppose | X NY| > 2.
Then X UY is mixed critical and d(X,Y) = 0 by Lemma 2.3(¢). Thus XUY =V —r.
Since Z is critical, G[Z] is connected by Lemma 2.5. Hence (Y N Z) = {t} implies
d(X,Y) > 1, a contradiction. So we have (X NY| = |XNZ| = [YNnZ =1
and X NY NZ = (. Lemma 2.2 now gives that X UY U Z is mixed critical and
d(X,Y,Z)=0. Since N(v) C (X UY UZ), we must have X UY UZ =V —wo.

Thus (Y, V — (Y — {w,t})) is an unbalanced 2-separation, provided |Y'| > 3 holds.
Similarly, we have an unbalanced 2-separation when |Z| > 3. To complete the proof
observe that if |Y| = |Z| = 2 then, since G is a circuit, we have |X| > 3. Hence
(X, (YU Z)+wv) is an unbalanced 2-separation in G. .

Lemma 4.4. Let G = (V; D, L) be a mized circuit and v be a pure node of G with
three distinct neighbours w,w,t. Then there cannot exist pure critical sets X,Y, 7 of
the same type as v in G —v with {u,w} C X CV —{v}, {w,t} CY CV —{v}, and
{u,t} CZ CV —{v}.

Proof: Suppose that the three sets in the lemma do exist. If | X UY| > 2, say, then
Lemma 2.3(b) implies that G[(X UY') 4+ v] contains a pure circuit, a contradiction.
So | XNY|=|XnZl=YNnZ=1and XNY NZ ={(. Lemma 2.4(b) now gives
that (X UY U Z) U {v} contains a spanning pure circuit, a contradiction. o

Lemma 4.5. Let G = (V; D, L) be a mized circuit and v be a mized node of G. Then
exactly one of the following alternatives hold:

(a) v is admissible;

(b) v has exactly two neighbours u,w and there exists a length critical set X and a
direction critical set Y with X NY ={u,w}, XUY =V — v, and d(X,Y) = 0;

(¢) There is a strong flower on v in G.
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Figure 6: A non-admissible pure node v.

Proof: Assume v is not admissible. If v has only two neighbours then (b) holds by
Lemma 4.1. Hence we may suppose that v has three distinct neighbours u, w, t.

Suppose there exists a length critical set X and a direction critical set ¥V in G — v
with X NY = {u,w} and X UY = V —ov. By symmetry we may suppose that
t € X —Y. Then all edges incident to ¢ (except possibly vt) are length edges, so t
cannot belong to a direction critical set in G — v. Since v is not admissible, we must
have a mixed critical set Z in G — v with {u,t} C Z C V — {v,w} by Lemma 4.1.
Since u is a cutvertex of G — v —w, Z N X is mixed critical by Lemma 2.5(b). But
D(Z N X) =0, a contradiction.

Thus, by Lemma 4.1, we must have mixed critical sets X,Y, 7 in G — v with
{u,w} C X CV —{u, t}, {w,t} CY CV —{wv,u}, and {u,t} C Z CV — {v,w}.

The lemma now follows from Lemma 4.2. °

Lemma 4.5 implies the following.

Lemma 4.6. Let G = (V;D, L) be a mized circuit with |V| > 4 and let v be a
mized node of G with |N(v)| = 2. If v is non-admissible then there is an unbalanced
2-separation in G.

We next consider the case when v is a pure node.

Lemma 4.7. Let G be a mized circuit and v be a pure node of G. If v is non-
admissible then either there is an unbalanced 2-separation in G, or there is a weak or
strong flower on v in G.

Proof: We may suppose that v is non-admissible and, by symmetry, that v is length
pure. Since v is pure, we must have |N(v)| = 3. Since v is non-admissible there is a
mixed critical or length critical set in G — v containing each pair of neighbours of v.
The lemma now follows from Lemmas 4.1, 4.2, 4.3, 4.4. °

If v is a node in a mixed circuit G with N(v) = {u,w, z} and X is a critical set in
G — v with u,w € X and v,z ¢ X, then we call X a v-critical set on u and w, or
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simply a v-critical set. If d(z) = 3 then the 1-reduction G** is non-admissible, since
it would make the degree of z be equal to two. In this case V — {v, z} is a “trivial”
v-critical set on u and w. “Non-trivial” critical sets will be of particular interest: if
X is a v-critical set on u and w for some node v with N(v) = {u,w, 2z}, and d(z) > 4,
then X is said to be v-node-critical or simply node-critical.

Lemma 4.8. Let G = (V; D, L) be a balanced mized circuit and let v € V be a
node. Let N(v) = {x,y, 2z} with d(z) > 4, and let X be a mized v-critical set on x,y.
Suppose that either

(i) there is a non-admissible series node uw € V. — X — v with exactly one neighbour w
in X, and w is a node, or

(ii) there is a non-admissible leaf node t € V — X — v.

Then there is a mized node-critical set X* with | X*| > | X|.

Proof: Since G is balanced, it follows from Lemmas 4.6 and 4.7 that all non-
admissible nodes have three distinct neighbours and there exists a (weak or strong)
flower on each non-admissible node of G.

Suppose that condition (i) holds. Let N(u) = {w, p, q}. By our assumption N(u) N
X = {w} and d(w) = 3. Since u is a series node, we may assume that d(p) = 3
and d(q) > 4. The non-admissibility of u implies that there exists a (pure or mixed)
u-critical set Y on w and p. Since G[V3] is a forest by Lemma 3.4, we must have
pw ¢ DU L and hence |Y| > 3. Thus G[Y] has minimum degree at least two by
Lemma 2.5(i) and hence Y contains each of the two neighbours of w distinct from
u. Since G[X] is connected, at least one of these neighbours of w must belong to X.
Thus [X NY| > 2. By Lemma 2.3 X* = X UY is a mixed u-critical set on w and p.
Since d(¢) > 4 and p ¢ X, we can also deduce that X* is a mixed u-node-critical set
which properly contains X.

Thus we may assume that condition (ii) holds. We must have [N () N X| < 2, since
IN(t) N X| = 3 would imply that G[X + t] contains a circuit. If |N(¢) N X| = 2 then
X +t is also mixed v-node-critical and the lemma follows by choosing X* = X + .
Thus we may assume that |[N(¢) N X| < 1.

Since t is non-admissible, we may choose a flower on ¢. Since t is a leaf node, this
flower contains two t-node-critical sets Y; and Y5 with YUY, =V —t and d(Y3,Ys) = 0.
Furthermore, if one of the neighbours of ¢ is a node, then it belongs to Y; N'Y5.

Suppose that |X| = 2. Then, since G[X] is connected and YUY, =V — ¢ and
d(Y1,Y2) = 0, we obtain, without loss of generality, that X C Y;. If X = Y] then
IN(t) N X| =2 would follow, so we must have X properly contained in Y. Since X
is mixed, Y] is also mixed. Hence the lemma follows by choosing X* = Y.

Thus we may assume that |[X| > 3. Since YUY, =V — 1, ¢t ¢ X, and |X| > 3,
we have | X NY]| > 2 or [ X NY;| > 2. Let us assume, without loss of generality, that
X NYj| > 2holds. By Lemma 2.3, X UY] is critical. If (N(¢) —Y;) — X # () then the
lemma follows by choosing X* = X U Yj, which is a mixed ¢-node-critical set which
properly contains X.

Thus we may assume that N(t)NX = {s} and s ¢ Y holds. This implies d(s) > 4,
since if d(s) = 3 then we have s € Y] NY5, as noted above. Since YUY, =V — ¢, we
have s € Y,. If |[X N Y5 > 2 then we are done, as above, by choosing X* = X U Y5.
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Figure 7: A direction balanced mixed circuit with no admissible nodes.

Thus we may suppose that XNY,; = {s}. Since YUY, =V —tand N(H)NY1NX =0,
this implies | X| < |Y7|. Thus if Y] is mixed, the lemma follows by choosing X* = Y.
Otherwise the definition of a flower implies that Y5 is mixed. Since X NY; # (), we
obtain that X UY; is mixed critical by Lemma 2.3(a). Thus X* = X UY; is mixed
t-node-critical set which properly contains X, as required. °

Theorem 4.9. Let G = (V; D, L) be a balanced mized circuit with |V| > 4. Then G
has an admissible node.

Proof: For a contradiction suppose that GG is a balanced mixed circuit without ad-
missible nodes. Since G is a circuit, it has at least two nodes. Hence, by Lemma
3.4, the node subgraph of G is a non-empty forest. Let v be a leaf node of G. Since
V| > 4 and G is balanced, it follows from Lemmas 4.5,4.6, and 4.7 that there exists
a flower on v. Hence there exists a mixed v-node-critical set X,. Choose a maximum
size mixed node-critical set X,, with respect to some node w. Since X,, + w is mixed
critical, Lemma 3.5 implies that there is a node in V —w — X,,,. Since G[V3] is a forest
we can deduce that one of the two alternatives of Lemma 4.8 must hold. Thus there
is mixed critical node-critical set X* with | X*| > |X,,|. This contradicts the choice of
X, and completes the proof. °

The mixed circuit in Figure 7 shows that the hypothesis of Theorem 4.9 that G is
balanced cannot be weakened to direction (or length) balanced.

We may strengthen Theorem 4.9 by using the following result on the existence of
admissible nodes in pure circuits (where a node in a pure circuit G is admissible if
some l-reduction of G at v results in a smaller pure circuit).

Theorem 4.10. [1] Let G be a pure circuit with at least five vertices and x,y, z be
vertices of G with xy an edge of G. Then G has an admissible node distinct from
x,Y, 2.

Theorem 4.11. Let G = (V; D, L) be a mized circuit with |V| > 4. Then either G
can be expressed as a 2-sum of a mized circuit with a pure Ky, or G has an admissible
node.

Proof: Suppose that G has no admissible nodes. By Theorem 4.9 this implies that
there is a 2-separation (Hi, Hy) in G for which Hs, is pure. Choose the 2-separation
so that Hy is minimal. Let V(H;) NV (Hy) = {a,b}. Then H' is a 3-connected pure
circuit, where H' is obtained from H, by adding an edge ab whose type is the same
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as that of Hy. If [V/(H')| = 4 then H' is isomorphic to K4 are the theorem follows.
Suppose that |V (H')| > 5 holds. Then Theorem 4.10 implies that H' has an admissi-
ble node v, different from a, b. Let H, obtained from H' by an admissible 1-reduction
at v. Since the 2-sum of H; and H) is a mixed circuit, it follows that v is admissible
in (G, a contradiction. This completes the proof. °

Theorem 4.11 and Lemmas 3.6 and 3.7 lead to the following inductive construction
for mixed circuits, and hence solve an open problem raised by Servatius and Whiteley

in [16].

Theorem 4.12. Let G be a mized circuit. Then G can be obtained from K3 or Ky
by a sequence of 1-extensions and 2-sums with pure Kj'’s.

We close this section with one more lemma on admissible mixed nodes, which we
will need for our characterization of globally rigid circuits.

Lemma 4.13. Let G = (V; D, L) be a direction balanced mized circuit and v be a
mized node of G. Suppose that G2Y is an admissible length 1-reduction at v. Suppose
further that G* contains a 2-separation (Hy, Hs) in which Hy is length pure and
xy € E(Hy). Then there is an admissible direction 1-reduction at v.

Proof: First suppose v has only two neighbours x,y. Since the 1-reduction on xy is
admissible, there is no mixed critical set in G — v containing x, y. Since G is direction
balanced, at least one of x or y is in V(Hy) — V(H;). Hence there is no direction
critical containing z,y. Thus G?Y is also an admissible direction 1-reduction at v.
Now suppose N(v) = {u,w,t} and V(H;) NV (Hsy) = {a,b}. Since G is direction
balanced, we may assume that ¢t € V(Hy) — V(H;). Suppose that the direction 1-
reductions on ¢,u and t,w are both non-admissible. Since all edges incident to ¢ in
G — v are length edges there exists no direction critical set in G — v containing ¢. Thus
we must have two mixed critical sets X,Y in G — v with {u,t} C X, X CV — v —w,
{w,t} CY,Y CV—v—u. Since H, is length pure, it follows from Lemma 2.5(ii) that
we must have {a,b} C X NY. This implies N(v) N{a,b} = (), so both end-vertices of
the edge created by the 1-reduction must be in V/(Hy) —V (H;). By symmetry this im-
plies that we also have a mixed critical set Z in G —v with {u,w} C Z, Z CV —v 1,
contradicting the assumption that v is admissible. °

5 Feasible nodes

We saw in Lemma 1.6(c) that globally rigid generic mixed frameworks are direction
balanced. We shall show in the next section that this necessary condition for global
rigidity is also sufficient when the underlying graph is a mixed circuit. Our proof
uses induction on the size of the circuit and relies on the recursive construction for
direction balanced mixed circuit which we will derive in this section.

A 1-reduction in a direction-balanced mixed circuit G is feasible if it results in a
smaller direction-balanced mixed circuit. We say that a node v of GG is feasible if it
has a feasible 1-reduction, and otherwise that v is infeasible.
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Lemma 5.1. Let v be an admissible node of a direction-balanced mized circuit G and
G, be the mized circuit obtained by performing an admaissible 1-reduction atv. Suppose
that G, is not direction balanced. Then G, has a 2-separation (Hy, Hy) such that Ho
is length pure. Furthermore, for every such 2-separation of G, Hy — Hy contains a
neighbour of v, and, if v is length pure, then Hy — Hy also contains a neighbour of v.

Proof: Since G, is not direction balanced, G, has a 2-separation (H,, Hy) where H,
is length pure. Since G is direction-balanced, (H; + v, Hy) is not a 2-separation of G
and hence Hy — Hy contains a neighbour of v. If v is length pure then (Hy, Hy + v) is
not a 2-separation of G and hence H; — Hy contains a neighbour of v. °

Theorem 5.2. Suppose G is a direction-balanced mized circuit with at least four
vertices. Then either G can be expressed as a 2-sum of a direction-balanced circuit
and a direction pure Ky, or G has a feasible node.

Proof: We proceed by contradiction. Suppose the theorem is false and let G be a
counterexample.

Suppose that G = G &y G, for some mixed circuit, G, and pure Ky, G,. Since
G is direction-balanced, Gy must be direction-pure. The fact that G is direction
balanced now implies that (¢; is direction-balanced. This contradicts the fact that G
is a counterexample. Thus GG cannot be expressed as a 2-sum of a mixed circuit and
a pure K4, and hence GG has an admissible node by Theorem 4.11.

We say that an admissible 1-reduction of G at a node v is acceptable if it is an
admissible direction 1-reduction at v if such a splitting exists (and is an admissible
length 1-reduction when no admissible direction 1-reduction at v exists). Choose an
acceptable l-reduction G%Y of G and a direction unbalanced 2-separation (H;, H»)
of G%Y such that H, is length pure and H, has as few vertices as possible. Let
V(H,) NV(Hy) = {u,v} and Ng(w) = {x,y,2}. Let G; be obtained by adding a
length edge uv to H; for each i € {1,2}. Using Lemma 3.7 and the minimality of H,
we have:

Claim 5.3. G is a mized circuit and Gy is a 3-connected length-pure circuit.
We shall prove that H, contains a feasible node of G.

Claim 5.4. FEither {z,y,z} N V(H; — Hy) # 0 or {u,v} = {x,y} and G%Y is a
direction 1-reduction of w onto xy.

Proof: Suppose the claim is false. Since G is direction balanced, and Hs is length
pure, w must be a mixed node of G and xy must be a length edge of G;Y. Lemma 4.13
now implies that G has an admissible direction 1-reduction at w which contradicts
the fact that G%;Y is an acceptable 1-reduction of G. °

Claim 5.5. No node of Gy in V(Gy) — {u,v,z,y, 2} is admissible.
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Proof: Suppose b € V(G3y) — {u,v,z,y, 2} is an admissable node of G5. Let (GQ)Z’d
be an admissible 1-reduction of G'3. Then (GQ)Z’d is a length pure circuit. By Lemma
3.7(a),

H =G @ (Gy))" = (G),"

is a mixed circuit. Since G is a 1-extension of H, Lemma 3.6 implies that G{'” is a
mixed circuit and hence Gg’d is an admissible 1-reduction in G. Since b is a length-
pure node of G, GZ’d is acceptable. Lemma 5.1 implies that Gg’d has a 2-separation
(Hy, H}) where H! is length-pure and both H| — H) and H} — H| contain a neighbour
of b. We may suppose that (H|, H;) has been chosen such that H; is minimal. Let
V(H) NV (H,) = {u/,v'}. Since u/,v" have degree at least four in G§'* by Lemma 3.7,
they have degree at least four in G. Thus w ¢ {u',v'}.

Since {u', v'} is a 2-vertex-cut of Gg’d, it is also a 2-vertex-cut of H. Similarly {u, v}
is a 2-vertex-cut of H. Since (G) is a circuit, it is 2-connected by Lemma 3.3. Thus
(G)5" —w and (G4)5® — v are both connected. Since Ng(b) C V(Gy), and since {u/,v'}
separates two of the neighbours of b in G5, we must have either {u/,v'} = {u,v} or
{u';,v'} N (V(Gy) — {u,v}) # 0. Applying Lemma 3.8 to H if the latter alternative
holds, we have {u',v'} C V(Gy) in both cases. Thus V(H,) C V(H;). If the first
alternative of Claim 5.4 holds, then w is adjacent to at least one vertex of H; — Hy. If
the second alternative of Claim 5.4 holds, then w is not a length pure node of G. We
may deduce in both cases that V(H;) and w are both contained in Hj. This implies
that |V (H,)| < |V (Hs)|, which contradicts the minimality of Hs. o

Claim 5.6. G, is isomorphic to Kjy.

Proof: Suppose G, is not isomorphic to K. By Claim 5.5, all admissible nodes
of Gy are in {u,v,x,y,2}. Since uv € E(Gy), Claim 5.4 and Theorem 4.10 imply
that z,y € V(Gy) — {u,v}, 2 € V(G,) and u,v,x,y are the only admissible nodes
in GG9. Since G7Y is an acceptable 1-reduction of GG, Lemma 4.13 implies that w is a
length-pure node of G. We shall show that x is a feasible node in G.

Since z is an admissible node of Gy, (G3)%" is a pure circuit for some s,t € Ng, ().
Let Ng,(x) = {q,s,t}. Since xy is an edge of Gy and y is a node of G, we must
have y € {s,t}. Without loss of generality, y = ¢t. By Lemma 3.7(a), H = (GZY)3¥ =
G & (G2)%Y, is a mixed circuit. Since G&v is a 1-extension of H, Lemma 3.6 implies
that G is a mixed circuit. Thus x is an admissible node of GG. Since z is a length-
pure node of GG, G2 is an acceptable 1-reduction of G. Lemma 5.1 now implies that
G has a 2-separation (Hj, Hy) where Hj is length-pure and H; — H) and H) — H|
both contain a neighbour of = in G. We may suppose that (H;, Hj) has been chosen
such that H is minimal. Let V(H;) NV (H,) = {u',v'}. Since «’,v" have degree at
least four in G5 by Lemma 3.7, they have degree at least four in G. Thus w ¢ {u/, v'}.

We proceed as in the proof of Claim 5.5. Since G is direction-balanced, {u’, v'} sepa-
rates w and ¢ in G5™. Since {u', v'} is a 2-vertex-cut of G5, it is also a 2-vertex-cut of
H. Similarly {u, v} is a 2-vertex-cut of H. Since (G9)Y is a circuit, it is 2-connected.
Thus the graph obtained from (G5)3¥Y by adding the vertex w and edges sw, sy is 2-
connected. Since Ng(x) C V(G3), and since {u',v'} separates two of the neighbours

EGRES Technical Report No. 2008-09



Section 5. Feasible nodes 20

of x in G5, we must have either {u’,v'} = {u, v} or {v/,v'} N (V(Gs) — {u,v}) # 0.
Applying Lemma 3.8 to H if the latter alternative holds, we have {u’,v'} C V(G;) in
both cases. We may now deduce as in the proof of Claim 5.5 that |V (H,)| > |V (H))|.
This contradicts the minimality of Hs. °

Claim 5.7. {z,y} # {u,v}.

Proof: Suppose {z,y} = {u,v}. Since G is direction balanced, z € V(Hy) — {z,y}
and w is not a length pure node of G. Since G; and G5 are circuits and (G5 is length
pure, G2¥ is a direction l-reduction of w onto zy and zy is a direction edge of H;.
Let V(Hy) = {x,y, z,t}. Then t is a length-pure node of G.

Let G}Y be obtained by performing a 1-reduction ¢ onto a length edge xy. Then
G}Y can be constructed from G by two l-extensions. (We first delete the direction
edge zy, add the vertex z, length edges zz,zy and a direction edge zz. We then
delete the direction edge zz, add w and edges wzx, wy, wz of the same type as in G.)
Thus G} is a mixed circuit by Lemma 3.6. Lemma 5.1 now implies that G}"" has a
2-separation (H{, H}) where HY is length-pure and both H] — H), and H), — H/ contain
a neighbour of ¢. This is impossible since the neighbours of ¢ in G induce a complete
graph in G}V, Thus {z,y} # {u,v}. o

Claim 5.8. {z,y} C V(Hs) and w is a length-pure node of G.

Proof: Suppose that {z,y} ¢ V(H,). Since zy is an edge of GZ¥, we must have
{z,y} C V(H,) and z € V(H,). Choose t € V(Hy) — {u,v,z}. We have V(H,) =
{u,v,z,t} and t is a length-pure node of G. Let G} be obtained by performing a
I-reduction of ¢ onto a length edge uv. Then G;"" can be constructed from G; by two
l-extensions so is a mixed circuit by Lemma 3.6. Lemma 5.1 now implies that G}""
has a 2-separation (H;, H)) where H) is length-pure and both H] — H), and H), — H;
contain a neighbour of ¢. This is impossible since the neighbours of ¢ in G induce a
complete graph in G}"". Thus {z,y} C V(H,).

We may now use Lemma 4.13, Claim 5.7 and the fact that G is an acceptable
1-reduction of G to deduce that w is length-pure. .

Claim 5.9. {z,y} N {u,v} # 0.

Proof: Suppose the claim is false. Then x and y are both length-pure nodes of G. Let
G be obtained by performing a 1-reduction of G at = onto a length edge wv. Note
that wv ¢ E(G) since the neighbour of w distinct from xz, y belongs to H; — H,. Note
further that G can be obtained from G, by a sequence of two 1-extensions. Thus
G¥? is a mixed circuit by Lemma 3.6. Lemma 5.1 implies that G¥*¥ has a 2-separation
(Hy, H}) where H} is length-pure and both H{ — Hj and H) — H| contain neighbours
of z. Since each of the neighbours of z in G is a neighbour of y in GY"”, we must have
y € V(H])NV (H}). This contradicts Lemma 3.7(b) since y has degree three in G¥. o

EGRES Technical Report No. 2008-09



Section 6. Globally rigid circuits 21

We can now complete the proof of the theorem. Using Claims 5.8 and 5.9, and
relabelling if necessary, we may suppose that y = v and V(Hy) = {u,y,z,t}. Thus x
and t are length-pure nodes of G. Let G¥* be obtained by performing a 1-reduction of
G at x onto a length edge wt. Note that wt ¢ E(G) since the neighbour of w distinct
from x,y belongs to H; — H,. Note further that G¥* can be obtained from G, by a
sequence of two l-extensions. Thus G is a mixed circuit by Lemma 3.6. Lemma
5.1 implies that G¥' has a 2-separation (Hj, H)) where H) is length-pure and both
H{ — H and Hj — Hj contain neighbours of z. Since both the neighbours of = in
GG — t are neighbours of ¢ in G**, we must have ¢ € V/(H;) NV (H)). This contradicts
Lemma 3.7(b) since ¢ has degree three in G¥*". o

Theorem 5.10. Let G = (V; D, L) be a mized graph. Then G is a direction-balanced
mized circuit if and only if G can be obtained from K or K; by 1-extensions and
2-sums with direction-pure K, '’s.

Proof: It is easy to see that the operations of 1-extension and taking a 2-sum with
a direction-pure K, preserve the property of being a direction-balanced circuit. We
may verify the reverse implication by induction on |V| using Theorem 5.2. °

6 Globally rigid circuits

We can now obtain our promised characterization of generically globally rigid mixed
circuits. We need one final lemma.

Lemma 6.1. Suppose G is a mized graph and G = G ©o Gy where Gy is a direction-
pure K. Let (G,p) be a generic realization of G and py be the restriction of p to Gy.
If (G, 1) is globally rigid, then (G,p) is globally rigid.

Proof: [t is straightforward to check that G can be constructed from G; by a direc-
tion 1-extension and a direction 0-extension. The lemma follows since these operations
preserve global rigidity by Theorem 1.7 and Theorem 1.8, respectively. °

Theorem 6.2. Let (G,p) be a generic realization of a mized circuit. Then (G,p) is
globally rigid if and only if G is direction-balanced.

Proof: Necessity follows from Lemma 1.6(c). Sufficiency follows from Theorem 5.10
using the facts that both the mixed circuits with three vertices are globally rigid, and
that the operations of 1-extension and 2-sum with a direction-pure K, preserve global
rigidity by Theorem 1.7 and Lemma 6.1, respectively. °
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7 Concluding remarks

There exist efficient algorithms to check whether the sparsity conditions (1) or (2)
are satisfied (in the underlying unlabeled graph H of G). Condition (1) holds if
and only if the edge set of H can be covered by two forests, which can be tested in
O(n*?logn?/m) time [5], where n and m denote the number of vertices and edges,
respectively. Condition (2) is equivalent to independence in the well-known length
rigidity matroid and can be tested in O(n?) time, see [2] and the references therein.
By using these algorithms one can test independence in the mixed rigidity matroid,
check whether a given mixed graph G is a mixed (or pure) circuit, and obtain the
inductive construction of Theorem 4.12 in polynomial time.

Testing whether G is direction balanced can be done in linear time. This follows by
observing that G is direction balanced if and only if all 2-separations (H;, Hs) in which
H, is minimal are direction balanced. It is straightforward to obtain these special 2-
separations from the cleavage units (or 3-connected components) of H, which can be
listed in O(n+m) time [9]. Thus one can also check whether G is a direction balanced
mixed circuit and obtain the inductive construction of Theorem 5.10 in polynomial
time.

We remark that the results of this paper, together with [11], can be used to char-
acterize the ‘globally linked pairs’, the ‘globally rigid clusters’, and the ‘uniquely
localizable vertices’ in mixed circuits, c.f. [12].

7.1 Strongly globally rigid frameworks

Let G = (V; D, L) be a mixed graph and (G, p), (G, ¢) be 2-dimensional mixed frame-
works. Let us say (G,p) and (G,q) are strongly equivalent if edges in L have the
same length and edges in D have the same ‘oriented direction’; i.e. p(u) — p(v) =
k(q(u) — q(v)) for some k > 0. We can also define strong rigidity and strong global
rigidity. Clearly strong rigidity is the same as rigidity, but this is not true for global
rigidity. We can observe that strong global rigidity is not a generic property. For
example let (H,p) be strongly globally rigid and let (G, p') be obtained from (H, p)
by a 0-extension which adds a vertex v incident with one length edge vu and one
direction edge vw. Then the strong global rigidity of (G,p’) depends on the ratio of
the length of vu and the distance between u and w.
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