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AbstractA two-dimensional mixed framework is a pair (G; p), where G = (V ;D;L) isa graph whose edges are labeled as `direction' or `length' edges, and p is a mapfrom V to R2 . The label of an edge uv represents a direction or length constraintbetween p(u) and p(v). The framework (G; p) is called globally rigid if everyframework (G; q) in which the direction or length between the endvertices ofcorresponding edges is the same as in (G; p), can be obtained from (G; p) by atranslation and, possibly, a dilation by �1.We characterize the generically globally rigid mixed frameworks (G; p) forwhich the edge set of G is a circuit in the associated direction-length rigiditymatroid. We show that such a framework is globally rigid if and only if each2-separation S of G is `direction balanced', i.e. each `side' of S contains adirection edge. Our result is based on a new inductive construction for thefamily of edge-labeled graphs which satisfy these hypotheses. We also settle arelated open problem posed by Servatius and Whiteley concerning the inductiveconstruction of circuits in the direction-length rigidity matroid.1 IntroductionConsider a con�guration of points p1; p2; :::; pn in Rd together with a set of constraintswhich �x the direction or the length between some pairs pi; pj. A basic question iswhether the con�guration, with the given constraints, is locally or globally unique,up to `congruence'. Results of this type have applications in CAD [16], localizationof sensor networks [4], and in determining molecular conformation [8].We model the con�guration and constraints as a `mixed framework'. A mixed graphG = (V ;D;L) is an undirected graph together with a labeling (or bipartition)D[L ofits edge set. We refer to edges inD as direction edges and edges in L as length edges. A?School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, LondonE1 4NS, England. e-mail: b.jackson@qmul.ac.uk. This work was supported by an InternationalJoint Project grant from the Royal Society.??Department of Operations Research, E�otv�os University, P�azm�any P�eter s�et�any 1/C, 1117 Bu-dapest, Hungary. e-mail: jordan@cs.elte.hu. Supported by the MTA-ELTE Egerv�ary ResearchGroup on Combinatorial Optimization and the Hungarian Scienti�c Research Fund grant no. T49671,T60802. May 19, 2008



Section 1. Introduction 2
Figure 1: Two equivalent but non-congruent realizations of a mixed graph. We usesolid or dashed lines to indicate edges with length or direction labels, respectively.mixed framework is a pair (G; p), where G = (V ;D;L) is a mixed graph and p is a mapp : V ! Rd . We say that (G; p) is a realization of G in Rd . Two mixed frameworks(G; p) and (G; q) are mixed-equivalent (or simply equivalent) if (i) p(u) � p(v) is ascalar multiple of q(u)� q(v) for all uv 2 D and (ii) jjp(u)� p(v)jj = jjq(u)� q(v)jjfor all uv 2 L, where jj:jj denotes the Euclidean norm in R2 . We say that (G; p) is alength framework if D = ;, is a direction framework if L = ;, and is a pure frameworkif it is either a length or direction framework. If two pure frameworks satisfy (i) or(ii) then we say that they are direction- or length-equivalent, respectively.The mixed frameworks (G; p) and (G; q) are mixed-congruent (or simply congruent)if (i) p(u)�p(v) is a scalar multiple of q(u)�q(v) and (ii) jjp(u)�p(v)jj = jjq(u)�q(v)jjfor all u; v 2 V . We can de�ne direction-congruence and length-congruence in a similarway for pure frameworks by imposing only (i) or (ii) above.Note that if d = 2 then saying that two mixed frameworks are congruent is equiva-lent to saying that one can be obtained from the other by a translation and a rotationby 0 or 180 degrees about a point. Similarly, if two pure frameworks are direction-congruent (length-conguent) then one can be obtained from the other by a translationand a dilation (respectively, translation and/or rotation and/or re
ection).The mixed framework (G; p) is globally mixed-rigid in Rd if every framework which isequivalent to (G; p) is congruent to (G; p). Global direction-rigidity and global length-rigidity of pure frameworks are de�ned analogously. It is a hard problem to decide if agiven length framework is globally length-rigid. Indeed Saxe [15] has shown that thisproblem is NP-hard even for 1-dimensional frameworks. The problem becomes moretractable, however, if we assume that there are no algebraic dependencies between thecoordinates of the points of the framework.A framework (G; p) is said to be generic if the set containing the coordinates ofall its points is algebraically independent over the rationals. The characterizationof d-dimensional generically globally rigid pure frameworks is known for all d when(G; p) is a direction framework, and for d � 2 when (G; p) is a length framework. Aclosely related notion, which plays a key role in these characterizations is rigidity. Themixed framework (G; p) is mixed-rigid if there exists an � > 0 such that every mixedframework (G; q) which is equivalent to (G; p) and satis�es kp(v)� q(v)k � � for allv 2 V , is congruent to (G; p). Direction- and length-rigidity of pure frameworks arede�ned analogously.We assume henceforth that d = 2 unless speci�ed otherwise. One can develop aEGRES Technical Report No. 2008-09



Section 1. Introduction 3rigidity theory for mixed frameworks in much the same way as for pure frameworks.For (x; y) 2 R2 let (x; y)? = (y;�x). The direction-length rigidity matrix of a mixedframework (G; p) is the matrix R(G; p) of size (jDj + jLj) � 2jV j, where, for eachedge uv 2 D [ L, in the row corresponding to uv, the entries in the two columnscorresponding to the vertex w are given by: (p(u) � p(v))? if uv 2 D and w =u; �(p(u) � p(v))? if uv 2 D and w = v; (p(u) � p(v)) if uv 2 L and w = u;�(p(u) � p(v)) if uv 2 L and w = v; (0; 0) if w 62 fu; vg. The rigidity matrix of(G; p) de�nes the direction-length rigidity matroid of (G; p) on the ground set D [ Lby linear independence of the rows of the rigidity matrix. The framework is saidto be independent if the rows of R(G; p) are linearly independent. Any two genericframeworks (G; p) and (G; p0) have the same rigidity matroid. We call this the 2-dimensional direction-length rigidity matroid R(G) = (D [ L; r) of the mixed graphG. We denote the rank of R(G) by r(G). The mixed graph G is said to be mixedindependent, or mixed rigid, if r(G) = jDj+ jLj, or r(G) = 2jV j� 2, respectively. Thefollowing lemma relates this linear algebraic de�nition of the rigidity of mixed graphsto the previous geometric de�nition for mixed frameworks.Lemma 1.1. [11] Let (G; p) be a mixed framework. If G is mixed rigid then (G; p) ismixed rigid. Furthermore, if (G; p) is generic, then (G; p) is mixed rigid if and onlyif G is mixed rigid.Direction and length rigidity matrices and matroids can be de�ned similarly forpure frameworks, as can direction and length independence and rigidity of (unlabelled)graphs, see [17]. Henceforth, we will suppress the pre�xes mixed, direction, and lengthwhen they are clear from the context.Length frameworks correspond to the well studied bar-and-joint frameworks, forwhich the characterization of generic rigidity and generic global rigidity are known upto dimension two. (We refer the reader to [6, 17] for a detailed survey of the rigidityof d-dimensional length frameworks.) A graph is length-rigid in R if and only if it isconnected. The characterization of length-rigid graphs in R2 is based on the followingcharacterization of length-independent graphs due to Laman. For G = (V;E) a graphand X � V , let E(X) denote the set, and i(X) the number, of edges in G[X], thatis, in the subgraph induced by X in G.Theorem 1.2. [13] A graph G = (V;E) is length independent if and only if i(X) �2jXj � 3 for all X � V with jXj � 2.Laman's theorem was extended to give a characterization of rigid graphs by Lov�aszand Yemini [14].A 1-dimensional generic length-framework (G; p) is globally length-rigid if and onlyif either G is the complete graph on two vertices or G is 2-connected. The charac-terization for d = 2 is as follows. We say that a graph G = (V;E) is redundantlylength-rigid if G � e is length-rigid for all edges e of G. The graph G is k-connectedif jV j � k + 1 and G�X is connected for all X � V with jXj � k � 1.Theorem 1.3. [3, 10] Let (G; p) be a 2-dimensional generic length-framework. Then(G; p) is globally rigid if and only if either G is a complete graph on two or threevertices, or G is 3-connected and redundantly rigid in R2 .EGRES Technical Report No. 2008-09



1.1 Main results 4The linearity of the direction constraints in a direction-framework (G; p) impliesthat direction-rigidity and global direction-rigidity are equivalent and are determinedentirely by the graph G for all direction frameworks (G; p), not just generic frame-works. Direction-independence - and (global) rigidity - were characterized by Whiteley[17]. For the special case of 2-dimensional frameworks, there is a simple transforma-tion which shows that direction-independence and (global) rigidity are equivalent tolength-independence and rigidity. In particular, Theorem 1.2 givesTheorem 1.4. [17] A graph G = (V;E) is direction independent if and only if i(X) �2jXj � 3 for all X � V with jXj � 2.Similarly the above mentioned characterization of length-rigid graphs due to Lov�aszand Yemini also characterizes (globally) direction-rigid frameworks.Independent mixed graphs were characterized by Servatius and Whiteley.Theorem 1.5. [16] A mixed graph G = (V ;D;L) is mixed independent if and onlyif, for all X � V with jXj � 2,i(X) � 2jXj � 2 when ED(X) 6= ; 6= EL(X); (1)and i(X) � 2jXj � 3 otherwise: (2)It is straightforward to use this result to obtain a characterization of rigid mixedgraphs. The problem of characterizing when a generic mixed framework (G; p) isglobally rigid remains open, however. We give a characterization for globally rigidmixed frameworks (G; p) in which the edge set is a circuit in the direction-lengthrigidity matroid. This complements the results on generically globally rigid length-frameworks whose edge set is a circuit in the length-rigidity matroid [1], and mayserve as a building block to a complete characterization.1.1 Main resultsWe �rst give necessary conditions for global mixed rigidity. We need the followingconcept. Let G be a 2-connected graph. A 2-separation of G is a pair of subgraphsG1; G2 such thatG = G1[G2, jV (G1)\V (G2)j = 2 and V (G1)�V (G2) 6= ; 6= V (G2)�V (G1). When G = (V ;D;L) is a mixed graph, we say that a 2-separation (G1; G2)is direction-balanced, respectively length-balanced, if both G1 and G2 contain an edgein D, respectively L. We say that (G1; G2) is balanced if it is both direction-balancedand length-balanced. A 2-separation which is not (direction-, length-) balanced is saidto be (direction-, length-) unbalanced. We say that G is (direction-, length-) balancedif all its 2-separations are (direction-, length-) balanced, see Figure 2.Lemma 1.6. Let (G; p) be a generic realization of a mixed graph G = (V ;D;L).Suppose that (G; p) is globally rigid. Then(a) G is rigid,(b) G is 2-connected,(c) G is direction balanced,(d) G has no non-trivial edge-cut consisting of two direction edges.EGRES Technical Report No. 2008-09



1.1 Main results 5
Figure 2: A mixed graph with a direction unbalanced 2-separation.Proof: The necessity of (a) follows from the de�nitions of mixed rigidity and globalrigidity and Lemma 1.1.To prove (b) suppose that G has a cut-vertex v and let H be a component of G�v.Applying a dilation by -1 centred on p(v) to the points p(x), x 2 V (H), gives anequivalent but non-congruent realization of G.For the proof of (c) let (H1; H2) be a direction-unbalanced 2-separation of G, whereH2 is length pure and V (H1) \ V (H2) = fu; vg. Let (G; q) be the realization ofG obtained by re
ecting p(x) in the line through p(u); p(v) for each x 2 V (H2).Then (G; q) is equivalent to (G; p) but jjp(x) � p(y)jj 6= jjq(x) � q(y)jj for all x 2V (H2)� fu; vg, y 2 V (H1)� fu; vg. Thus (G; p) is not globally rigid.Finally, suppose that G � fe; fg has two connected components H1; H2 each withat least two vertices, for some e; f 2 D. Let e = uv; f = wt and let Q be the pointof intersection of the lines through p(u); p(v) and p(w); p(t), respectively. Since p isgeneric, Q exists. Applying a dilation by �1 with center Q to p(x), x 2 V (H2), yieldsan equivalent but non-congruent realization of G. This proves (d) �Note that there exist mixed frameworks satisfying all conditions of Lemma 1.6 whichare not globally rigid, see Figure 1.Lemma 1.6(a) implies that mixed rigidity is a necessary condition for global mixed-rigidity. Unlike in length-frameworks, however, redundant mixed rigidity is not anecessary condition for global mixed-rigidity. The fact that rigidity is equivalent toglobal rigidity for direction frameworks implies that a generic minimally rigid mixed-framework, with exactly one length edge, is globally rigid. Such a mixed frameworkis clearly not redundantly mixed rigid.We next describe some suÆcient conditions for global mixed rigidity. We use thefollowing operations. A 0-extension of a mixed graph G = (V ;D;L) adds a new vertexv and new edges vu; vw for vertices u; w 2 V with the proviso that, if u = w, then thetwo edges from v to u are of di�erent type. A 1-extension (on edge uw and vertex z)for G deletes an edge uw and adds a new vertex v and new edges vu; vw; vz for somevertex z 2 V , with the provisos that at least one of the new edges has the same type asthe deleted edge and, if z = u, then the two edges from v to u are of di�erent type. Weshowed in [11] that 1-extension preserves global rigidity in redundantly rigid genericmixed frameworks. (See [12] for a similar result concerning length frameworks.)Theorem 1.7. [11] Let (G; p) and (H; q) be generic mixed frameworks with jV (H)j �3. Suppose that (H; q) is globally rigid and that G can be obtained from H by a 1-extension on an edge uw. Suppose further that H � uw is rigid, and p(x) = q(x) forEGRES Technical Report No. 2008-09



1.1 Main results 6
Figure 3: The two mixed circuits on three vertices. These graphs, denoted by K+3and K�3 , are the smallest (mixed) circuits of the direction-length rigidity matroid.all x 2 V (H). Then (G; p) is globally rigid.We also showed that a special kind of 0-extension preserves global rigidity.Theorem 1.8. [11] Let (G; p) and (H; q) be generic mixed frameworks with jV (H)j �3. Suppose that G can be obtained from H by a 0-extension which adds a vertex vincident to two direction edges. Suppose further that p(x) = q(x) for all x 2 V (H).Then (G; p) is globally rigid if and only if (H; q) is globally rigid.Note that if G is obtained by a 0-extension then G cannot be redundantly mixed rigid.We will use Theorems 1.7 and 1.8 to show that a special family of generic mixedframeworks are globally rigid. A mixed graph G = (V ;D;L) is a circuit if D [ Lis a circuit in the direction-length rigidity matroid. The circuit G is a mixed circuitif D 6= ; 6= L and otherwise it is a pure circuit, see Figure 3. Theorem 1.5 impliesthat mixed circuits are redundantly rigid mixed graphs with jDj+ jLj = 2jV j � 1, seeSection 3.We will need another operation on mixed graphs. Suppose that G1 = (V1; E1) andG1 = (V2; E2) are graphs with V1\V2 = fu; vg and E1\E2 = fuvg. Then we say thatthe graph G = (G1�uv)[(G2�uv) is a 2-sum of G1 and G2, and write G = G1�2G2.When Gi = (Vi;Di; Li) is a mixed graph for each i 2 f1; 2g and uv has the same typein both G1 and G2, their 2-sum is the mixed graph (V1 [ V2; (D1 [D2)� fuvg; (L1 [L2)� fuvg).We �rst characterize mixed circuits. (This solves an open problem raised by Ser-vatius and Whiteley in [16].)Theorem 1.9. Let G be a mixed circuit. Then G can be obtained from K+3 or K�3by a sequence of 1-extensions and 2-sums with pure K4's.We next obtain a re�ned characterization for direction balanced mixed circuits.Theorem 1.10. Let G = (V ;D;L) be a mixed graph. Then G is a direction-balancedmixed circuit if and only if G can be obtained from K+3 or K�3 by 1-extensions and2-sums with direction-pure K4's.Theorems 1.7 and 1.8 imply that the operations of 1-extension and 2-sum with adirection-pure K4 preserve global mixed-rigidity. We use this and the fact that K+3and K�3 are both generically globally rigid to obtain the following characterization ofglobally rigid mixed circuits.Theorem 1.11. Let (G; p) be a generic realization of a mixed circuit. Then (G; p) isglobally rigid if and only if G is direction balanced.EGRES Technical Report No. 2008-09



Section 2. Independent graphs and critical sets 7The organization of the paper is as follows. In Section 2 we prove a number ofpreliminary lemmas on the structure of independent mixed graphs. Mixed circuitsare introduced in Section 3. The inductive constructions for mixed circuits and di-rection balanced mixed circuits are obtained in Sections 4 and 5, respectively. Thecharacterization of globally rigid mixed circuits is deduced in Section 6, while Section7 contains additional remarks on algorithmic aspects and possible extensions.We close this section with a characterization of global rigidity for a special kind ofd-dimensional generic mixed frameworks.Theorem 1.12. Let G = (V ;D;L) be a mixed graph in which all pairs of adjacent ver-tices are connected by both a length and a direction edge, and (G; p) be a d-dimensionalgeneric realization of G. Then (G; p) is globally rigid if and only if G is 2-connected.Proof: Necessity follows from (the d-dimensional analogue of) Lemma 1.6(b). Toverify suÆciency suppose that G is 2-connected. Let (G; q) be a realization of Gwhich is equivalent to (G; p) and u; v be adjacent vertices of G. By applying a suit-able translation and dilation by �1 to (G; q), if necessary, we may suppose thatp(u) = q(u) and p(v) = q(v). Let p = (p1; p2; : : : ; pd) and q = (q1; q2; : : : ; qd). Since(G; p) and (G; q) are equivalent, and all pairs of adjacent vertices are connected byboth a length and a direction edge, we have p(x) � p(y) = �(q(x) � q(y)) for alladjacent x; y 2 V . Hence pi(x) � pi(y) = �(qi(x) � qi(y)) for all adjacent x; y 2 V ,and (G; pi) and (G; qi) are length-equivalent 1-dimensional length-frameworks. SinceG is 2-connected and (G; pi) is generic, (G; pi) is globally length-rigid in 1-dimensionalspace. Since pi(u) = qi(u) and pi(v) = qi(v), we must have pi(x) = qi(x) for all x 2 V .This holds for all 1 � i � d and hence p(x) = q(x) for all x 2 V . �2 Independent graphs and critical setsLet G = (V ;D;L) be an independent mixed graph and X � V with jXj � 2. ThenX is mixed critical if i(X) = 2jXj � 2, direction critical if iD(X) = 2jXj � 3 andEL(X) = ;, and length critical if iL(X) = 2jXj � 3 and ED(X) = ;. We say that Xis pure critical if X is either direction critical or length critical, and X is critical if Xis either mixed critical or pure critical.We shall need the following equalities, which are easy to check by counting thecontribution of an edge to each of their two sides.Lemma 2.1. Let G be a graph and X; Y � V (G). Theni(X) + i(Y ) + d(X; Y ) = i(X [ Y ) + i(X \ Y ): (3)Lemma 2.2. Let G be a graph and X; Y; Z � V (G). Theni(X) + i(Y ) + i(Z) + d(X; Y; Z) = i(X [ Y [ Z) + i(X \ Y ) + i(X \ Z) +i(Y \ Z)� i(X \ Y \ Z):EGRES Technical Report No. 2008-09



Section 2. Independent graphs and critical sets 8Given a graph G = (V;E) and two disjoint subsets X; Y � V , we use d(X; Y ) todenote the number of edges from X to Y . Let d(X) = d(X; V �X). When X = fxgwe abreviate d(X) to d(x) and refer to d(x) as the degree of x.Lemma 2.3. Let G = (V ;D;L) be an independent mixed graph.(a) If X; Y are mixed critical sets with X \ Y 6= ; then X \ Y and X [ Y are bothmixed-critical and d(X; Y ) = 0,(b) If X; Y are direction (respectively length) critical sets with jX \Y j � 2 then either(i) d(X; Y ) = 0 and X \Y and X [Y are both direction (respectively length) critical,or(ii) d(X; Y ) = 1, X [Y is mixed critical, and iD(X [Y ) = 2jX [Y j � 3 (respectivelyiL(X [ Y ) = 2jX [ Y j � 3) holds.(c) If X is mixed critical and Y is pure critical with jX \Y j � 2 then X [Y is mixedcritical, X \ Y is pure critical and d(X; Y ) = 0.(d) If X is length critical and Y is direction critical with jX \ Y j � 2 then X [ Y ismixed critical, d(X; Y ) = 0, and jX \ Y j = 2.Proof: The Lemma follows easily from Theorem 1.5 and Lemma 2.1. For example,we may verify (d) as follows.2jXj � 3 + 2jY j � 3 = i(X) + i(Y )= i(X \ Y ) + i(X [ Y )� d(X; Y )� 2jX [ Y j � 2� d(X; Y )= 2jXj+ 2jY j � 2jX \ Y j � 2� d(X; Y );since i(X \ Y ) = 0. Thus d(X; Y ) = 0, jX \ Y j = 2, and X [ Y is mixed critical. �Lemma 2.4. Let G = (V ;D;L) be an independent mixed graph and let X; Y; Z becritical sets satisfying jX \ Y j = jY \ Zj = jZ \Xj = 1 and X \ Y \ Z = ;.(a) If X is mixed critical then Y; Z are both pure critical, X [Y [Z is mixed critical,and d(X; Y; Z) = 0.(b) If X; Y; Z are direction (respectively length) critical then either(i) d(X; Y; Z) = 0 and X [ Y [ Z is direction (respectively length) critical, or(ii) d(X; Y; Z) = 1, X [Y [Z is mixed critical, and iD(X [Y [Z) = 2jX[Y [Zj�3(respectively iL(X [ Y [ Z) = 2jX [ Y [ Zj � 3) holds.Proof: (a) Since G is independent and the sets X; Y; Z are critical, Theorem 1.5and Lemma 2.2 imply that 2jXj � 2 + 2jY j � 3 + 2jZj � 3 � i(X) + i(Y ) + i(Z) =i(X [ Y [ Z)� d(X [ Y [ Z) � 2(jX [ Y [ Zj)� 2� d(X [ Y [ Z) = 2(jXj+ jY j+jZj � 3)� 2� d(X [ Y [Z) = 2jXj � 2 + 2jY j � 3 + 2jZj � 3� d(X [ Y [Z): Henced(X; Y; Z) = 0, X [ Y [ Z is mixed critical, and Y; Z are both pure critical.The proof of (b) is similar. �The following lemma summarizes the connectivity properties of subgraphs inducedby critical sets. The de�nition of a k-separation for k � 1 is analogous to that ofa 2-separation given before Lemma 1.6. A graph G = (V;E) is k-edge-connected ifG� F is connected for all F � E with jF j � k � 1.EGRES Technical Report No. 2008-09



Section 3. Circuits in the direction-length rigidity matroid 9Lemma 2.5. Let G = (V ;D;L) be an independent mixed graph and let X � V be acritical set. Then(a) G[X] is 2-edge-connected unless X is a pure critical set, jXj = 2, and G[X] is anedge.(b) If (J1; J2) is a 1-separation in G[X] then X is mixed critical and V (J1), V (J2)are also mixed critical.Proof: Let H = G[X] and suppose that H can be disconnected by deleting less thantwo edges. Then there is a set ; 6= A ( X with dH(A) � 1. Hence2jXj � 3 � i(X) � i(A) + i(X � A) + 1 � 2jAj � 2 + 2jX � Aj � 2 + 1 = 2jXj � 3:Thus equality must hold everywhere, which implies that X is pure critical and jAj =1 = jX � Aj. This proves (a).Now consider a 1-separation in H and let Vi = V (Ji), i = 1; 2. Suppose that X ispure critical. Then2jXj � 3 = i(X) = i(V1) + i(V2) � 2jV1j � 3 + 2jV2j � 3 = 2jV j � 4;a contradiction. Thus X is mixed critical. The previous inequality, when applied toa mixed critical setX, gives that Vi is also mixed critical for i = 1; 2. This proves (b). �3 Circuits in the direction-length rigidity matroidWe can use Theorem 1.5 to determine when a mixed graph is a circuit.Lemma 3.1. A mixed graph G = (V ;D;L) is a mixed circuit if and only if(a) jDj+ jLj = 2jV j � 1,(b) i(X) � 2jXj � 2 for all X � V with 2 � jXj � jV j � 1 and(c) iD(X) � 2jXj � 3 and iL(X) � 2jXj � 3 for all X � V with jXj � 2.Lemma 3.2. A mixed graph G = (V ;D;L) is a pure circuit if and only if(a) jDj+ jLj = 2jV j � 2 and either D = ; or L = ; and(b) i(X) � 2jXj � 3 for all X � V with 2 � jXj � jV j � 1.We say that a pure circuit is a direction circuit if L = ; and a length circuit if D = ;.It follows that, if G is a circuit, then the graph ~G obtained from G by interchangingthe direction and length edges is also a circuit. In addition, if G is a mixed circuitthen jDj � 2 and jLj � 2. The smallest mixed circuits, denoted by K+3 and K�3 , areobtained from a cycle on three direction (respectively length) edges by adding twonon-parallel length (respectively direction) edges, see Figure 3.Lemma 3.3. Let G = (V ;D;L) be a mixed circuit. Then G is 3-edge-connected and2-connected. EGRES Technical Report No. 2008-09



Section 3. Circuits in the direction-length rigidity matroid 10Proof: Consider a bipartition X [ Y = V X \ Y = ; of V with jXj; jY j � 2. Wehave jD[Lj = i(X)+ i(Y )+d(X) � 2jXj� 2+2jY j� 2+d(X) = 2jV j� 4+d(X) =jEj � 3 + d(X). This implies d(X) � 3. A similar argument shows that G is 2-connected. �Let V3 = fv 2 V : d(v) = 3g denote the set of vertices of degree three in a mixedgraph G = (V ;D;L). For convenience, vertices of degree three will be called nodes.We call G[V3] the node subgraph of G. A node of G with degree at most one (exactlytwo, exactly three) in the node subgraph of G is called a leaf node (series node,branching node, respectively). A node v 2 V is pure if all edges incident with v are ofthe same type. Otherwise v is mixed.Lemma 3.4. Let G = (V ;D;L) be a mixed circuit. Then G[V3] is a forest.Proof: Suppose that C is a cycle in the node subgraph of G. If V (C) = V (G) theneach vertex of G is a node. Thus 4jV j�2 = 2jD[Lj = 3jV j, which implies jV j = 2 andjEj = 3, a contradiction. (Since each circuit on two vertices is pure and has two edges.)So we may assume that X = V �V (C) 6= ;. Since each vertex of C is a node of G wehave i(V (C)) + d(V (C)) � 2jV (C)j. Thus i(X) = 2jV j � 1 � i(V (C))� d(V (C)) �2jV j � 1� 2jV (C)j = 2(jV j � jV (C)j)� 1 = 2jXj � 1, a contradiction. �Lemma 3.5. Let G = (V ;D;L) be a mixed circuit and let X � V be a mixed criticalset. Then there is a node of G in V �X.Proof: Let Y = V � X. Since G is 3-edge-connected, we have d(Y ) � 3. Sincei(Y ) + d(Y ) = jD [ Lj � i(X) = 2jV j � 1� 2jXj+ 2 = 2jY j+ 1, we obtainXv2Y d(v) = 2i(Y ) + d(Y ) = 4jY j+ 2� d(Y ) � 4jY j � 1:This implies the lemma. �It is straightforward to use Lemma 3.1 to deduce the following results on 1-extensionsand 2-sums of mixed circuits.Lemma 3.6. Let G be a mixed circuit and H be a 1-extension of G. Then H is amixed circuit.Lemma 3.7. Let G be a mixed graph.(a) Suppose G is the 2-sum of two mixed graphs G1 and G2. If G1 is a mixed circuitand G2 is a pure circuit, then G is a mixed circuit.(b) Suppose G is a mixed circuit and (H1; H2) is a 2-separation of G, where V (H1) \V (H2) = fu; vg and H2 is pure. Let Gi be obtained from Hi by adding a new edge uvof the same type as the edges of H2. Then G1 is a mixed circuit, G2 is a pure circuit,G = G1 �2 G2, dG(u) � 4 and dG(v) � 4.Our �nal result of this section restricts the ways in which two 2-separations in amixed circuit can `cross'.EGRES Technical Report No. 2008-09



Section 4. Admissible nodes 11Lemma 3.8. Let G be a mixed circuit and (H1; H2), (H 01; H 02) be 2-separations of G.Suppose that H2 is pure and V (H 01)\V (H 02) 6� V (H1). Then V (H 01)\V (H 02) � V (H2).Proof: Suppose the lemma is false. Then V (H 01)\V (H 02) contains exactly one vertexof V (H1)� V (H2) and exactly one vertex of V (H2)� V (H1). Let X1 = V (H1), X2 =V (H2)\V (H 01) and X3 = V (H2)\V (H 02). Then E(G) = EG(X1)[EG(X2)[EG(X3).Since H2 is pure we havejE(G)j � (2jX1j � 2) + (2jX2j � 3) + (2jX3j � 3) = 2jV (G)j � 2:This contradicts the fact that G is a mixed circuit. �4 Admissible nodesLet G = (V ;D;L) be a mixed graph and v 2 V be a node. The 1-reduction operationat v on edges vu; vw deletes v and all edges incident with v, and adds a new edge uw.(This operation is called splitting in [1, 10, 12].) The type of the new edge is arbitrary,unless v is a pure node, in which case the type of uw must be the same as the type ofv. The graph obtained by the operation is denoted by Guwv , or more simply Gv. Notethat 1-reduction is the inverse operation to 1-extension. We say that the 1-reductionGuwv is a direction 1-reduction or a length 1-reduction according to the type of the newedge uw.When G is a mixed circuit, a 1-reduction is admissible if it results in a smaller mixedcircuit. A node v is admissible if G has an admissible 1-reduction at v. Otherwise vis non-admissible. Examples of non-admissible nodes are given in Figures 5 and 6.We will determine when a mixed circuit contains an admissible node. We needthe following four lemmas. The �rst characterizes when a 1-reduction at a node vis non-admissible in terms of critical sets containing two neighbours of v. The nextthree give information on the structure of families of critical sets containing pairs ofneighbours v.Lemma 4.1. Let G be a mixed circuit and let v be a node in G with edges vu; vw; vtincident to v, u 6= w. Suppose that there is no admissible 1-reduction of G at v onvu; vw. Then there exists a mixed critical set X in G � fv; tg with u; w 2 X orthere exists a direction critical set Y and a length critical set Z with Y \Z = fu; wg,d(Y; Z) = 0, and Y [ Z = V � v.Proof: Let ed = uw be a direction edge and el = uw be a length edge.Since G � v + ed is not a mixed circuit there exists either a mixed critical set Xin G � v with fu; wg � X and X 6= V � v, or a direction critical set Y � V � vwith fu; wg � Y . Suppose the �rst alternative holds. Then t =2 X since otherwise wewould have i(X [ v) = 2jX + vj � 1 and jX + vj � jV j � 1, contradicting the factthat G is a mixed circuit. Thus X would be the required mixed critical set. Hencewe may assume that the �rst alternative does not hold. It follows that there exists adirection critical set Y � V � v with fu; wg � Y . Since G � v + el is not a mixedEGRES Technical Report No. 2008-09



Section 4. Admissible nodes 12v uw
t

v uw
tFigure 4: A strong 
ower and a weak 
ower on node v.circuit, there also exists a length critical set Z in G � v with fu; wg � Z. ThenjY \ Zj � 2 and Lemma 2.3(d) implies that Y [ Z is mixed critical, Y \ Z = fu; wg,and d(Y; Z) = 0. Since G is a mixed circuit and i((Y [ Z) + v) = 2j(Y [ Z) + vj � 1,we have Y [ Z = V � v, as required. �For a mixed graph G = (V ;D;L) and X � V let N(X) denote the set of neighboursof X (that is, N(X) := fv 2 V �X : uv 2 E for some u 2 Xg).Lemma 4.2. Let G = (V ;D;L) be a mixed circuit and v be a node of G with threedistinct neighbours u; w and t. Suppose that there exist mixed critical sets X; Y inG� v with fu; wg � X � V � fv; tg and fw; tg � Y � V � fv; ug. Suppose furtherthat one of the following conditions hold:(i) there exists a mixed critical set Z in G� v with fu; tg � Z � V � fv; wg;(ii) there exists a pure critical set Z in G� v with fu; tg � Z � V � fvg.Then(a) X [ Y = X [ Z = Y [ Z = V � v,(b) X \ Y \ Z 6= ;, and(c) d(X; Y; Z) = 0.Proof: By Lemma 2.3(a), X \ Y and X [ Y are both mixed critical sets in G � vand d(X; Y ) = 0. Since N(v) � X [ Y , we must have X [ Y = V � v. SinceZ is critical, G[Z] is connected by Lemma 2.5. Thus X \ Y \ Z = ; would implyd(X; Y ) � 1, contradicting Lemma 2.3(a). Hence X \ Y \ Z 6= ;. This impliesjX \ Zj; jY \ Zj � 2. Thus Lemma 2.3(a),(c) gives X [ Z = V � v, Y [ Z = V � v,and d(X;Z) = d(Y; Z) = 0. Therefore d(X; Y; Z) = 0 must also hold. �A collection of three critical sets X; Y; Z satisfying the hypotheses of Lemma 4.2with condition (i) (respectively condition (ii)) is called a strong (respectively weak)
ower on node v, see Figure 4.Lemma 4.3. Let G = (V ;D;L) be a mixed circuit and v be a pure node of G with threedistinct neighbours u; w and t. Suppose that there exists a mixed critical set X andpure critical sets Y; Z of the same type as v in G� v with fu; wg � X � V � fv; tg,EGRES Technical Report No. 2008-09



Section 4. Admissible nodes 13
uv

wFigure 5: A non-admissible mixed node v.fw; tg � Y � V � fvg, and fu; tg � Z � V � fvg. Then there is an unbalanced2-separation in G.Proof: First observe that if jY \Zj � 2 then Lemma 2.3(b) implies that G[(Y [Z)+v]contains a pure circuit, a contradiction. Thus jY \Zj = 1. Next suppose jX \Y j � 2.Then X[Y is mixed critical and d(X; Y ) = 0 by Lemma 2.3(c). Thus X[Y = V �r.Since Z is critical, G[Z] is connected by Lemma 2.5. Hence (Y \ Z) = ftg impliesd(X; Y ) � 1, a contradiction. So we have jX \ Y j = jX \ Zj = jY \ Zj = 1and X \ Y \ Z = ;. Lemma 2.2 now gives that X [ Y [ Z is mixed critical andd(X; Y; Z) = 0. Since N(v) � (X [ Y [ Z), we must have X [ Y [ Z = V � v.Thus (Y; V � (Y � fw; tg)) is an unbalanced 2-separation, provided jY j � 3 holds.Similarly, we have an unbalanced 2-separation when jZj � 3. To complete the proofobserve that if jY j = jZj = 2 then, since G is a circuit, we have jXj � 3. Hence(X; (Y [ Z) + v) is an unbalanced 2-separation in G. �Lemma 4.4. Let G = (V ;D;L) be a mixed circuit and v be a pure node of G withthree distinct neighbours u; w; t. Then there cannot exist pure critical sets X; Y; Z ofthe same type as v in G� v with fu; wg � X � V � fvg, fw; tg � Y � V � fvg, andfu; tg � Z � V � fvg.Proof: Suppose that the three sets in the lemma do exist. If jX [ Y j � 2, say, thenLemma 2.3(b) implies that G[(X [ Y ) + v] contains a pure circuit, a contradiction.So jX \ Y j = jX \ Zj = jY \ Zj = 1 and X \ Y \ Z = ;. Lemma 2.4(b) now givesthat (X [ Y [ Z) [ fvg contains a spanning pure circuit, a contradiction. �Lemma 4.5. Let G = (V ;D;L) be a mixed circuit and v be a mixed node of G. Thenexactly one of the following alternatives hold:(a) v is admissible;(b) v has exactly two neighbours u; w and there exists a length critical set X and adirection critical set Y with X \ Y = fu; wg, X [ Y = V � v, and d(X; Y ) = 0;(c) There is a strong 
ower on v in G.EGRES Technical Report No. 2008-09



Section 4. Admissible nodes 14
tu v

wFigure 6: A non-admissible pure node v.Proof: Assume v is not admissible. If v has only two neighbours then (b) holds byLemma 4.1. Hence we may suppose that v has three distinct neighbours u; w; t.Suppose there exists a length critical set X and a direction critical set Y in G� vwith X \ Y = fu; wg and X [ Y = V � v. By symmetry we may suppose thatt 2 X � Y . Then all edges incident to t (except possibly vt) are length edges, so tcannot belong to a direction critical set in G� v. Since v is not admissible, we musthave a mixed critical set Z in G � v with fu; tg � Z � V � fv; wg by Lemma 4.1.Since u is a cutvertex of G � v � w, Z \ X is mixed critical by Lemma 2.5(b). ButD(Z \X) = ;, a contradiction.Thus, by Lemma 4.1, we must have mixed critical sets X; Y; Z in G � v withfu; wg � X � V � fv; tg, fw; tg � Y � V � fv; ug, and fu; tg � Z � V � fv; wg.The lemma now follows from Lemma 4.2. �Lemma 4.5 implies the following.Lemma 4.6. Let G = (V ;D;L) be a mixed circuit with jV j � 4 and let v be amixed node of G with jN(v)j = 2. If v is non-admissible then there is an unbalanced2-separation in G.We next consider the case when v is a pure node.Lemma 4.7. Let G be a mixed circuit and v be a pure node of G. If v is non-admissible then either there is an unbalanced 2-separation in G, or there is a weak orstrong 
ower on v in G.Proof: We may suppose that v is non-admissible and, by symmetry, that v is lengthpure. Since v is pure, we must have jN(v)j = 3. Since v is non-admissible there is amixed critical or length critical set in G� v containing each pair of neighbours of v.The lemma now follows from Lemmas 4.1, 4.2, 4.3, 4.4. �If v is a node in a mixed circuit G with N(v) = fu; w; zg and X is a critical set inG � v with u; w 2 X and v; z =2 X, then we call X a v-critical set on u and w, orEGRES Technical Report No. 2008-09



Section 4. Admissible nodes 15simply a v-critical set. If d(z) = 3 then the 1-reduction Guwv is non-admissible, sinceit would make the degree of z be equal to two. In this case V � fv; zg is a \trivial"v-critical set on u and w. \Non-trivial" critical sets will be of particular interest: ifX is a v-critical set on u and w for some node v with N(v) = fu; w; zg, and d(z) � 4,then X is said to be v-node-critical or simply node-critical.Lemma 4.8. Let G = (V ;D;L) be a balanced mixed circuit and let v 2 V be anode. Let N(v) = fx; y; zg with d(z) � 4, and let X be a mixed v-critical set on x; y.Suppose that either(i) there is a non-admissible series node u 2 V �X � v with exactly one neighbour win X, and w is a node, or(ii) there is a non-admissible leaf node t 2 V �X � v.Then there is a mixed node-critical set X� with jX�j > jXj.Proof: Since G is balanced, it follows from Lemmas 4.6 and 4.7 that all non-admissible nodes have three distinct neighbours and there exists a (weak or strong)
ower on each non-admissible node of G.Suppose that condition (i) holds. Let N(u) = fw; p; qg. By our assumption N(u)\X = fwg and d(w) = 3. Since u is a series node, we may assume that d(p) = 3and d(q) � 4. The non-admissibility of u implies that there exists a (pure or mixed)u-critical set Y on w and p. Since G[V3] is a forest by Lemma 3.4, we must havepw =2 D [ L and hence jY j � 3. Thus G[Y ] has minimum degree at least two byLemma 2.5(i) and hence Y contains each of the two neighbours of w distinct fromu. Since G[X] is connected, at least one of these neighbours of w must belong to X.Thus jX \ Y j � 2. By Lemma 2.3 X� = X [ Y is a mixed u-critical set on w and p.Since d(q) � 4 and p =2 X, we can also deduce that X� is a mixed u-node-critical setwhich properly contains X.Thus we may assume that condition (ii) holds. We must have jN(t)\Xj � 2, sincejN(t) \Xj = 3 would imply that G[X + t] contains a circuit. If jN(t) \Xj = 2 thenX + t is also mixed v-node-critical and the lemma follows by choosing X� = X + t.Thus we may assume that jN(t) \Xj � 1.Since t is non-admissible, we may choose a 
ower on t. Since t is a leaf node, this
ower contains two t-node-critical sets Y1 and Y2 with Y1[Y2 = V �t and d(Y1; Y2) = 0.Furthermore, if one of the neighbours of t is a node, then it belongs to Y1 \ Y2.Suppose that jXj = 2. Then, since G[X] is connected and Y1 [ Y2 = V � t andd(Y1; Y2) = 0, we obtain, without loss of generality, that X � Y1. If X = Y1 thenjN(t) \Xj = 2 would follow, so we must have X properly contained in Y1. Since Xis mixed, Y1 is also mixed. Hence the lemma follows by choosing X� = Y1.Thus we may assume that jXj � 3. Since Y1 [ Y2 = V � t, t =2 X, and jXj � 3,we have jX \ Y1j � 2 or jX \ Y2j � 2. Let us assume, without loss of generality, thatjX \Y1j � 2 holds. By Lemma 2.3, X [Y1 is critical. If (N(t)�Y1)�X 6= ; then thelemma follows by choosing X� = X [ Y1, which is a mixed t-node-critical set whichproperly contains X.Thus we may assume that N(t)\X = fsg and s =2 Y1 holds. This implies d(s) � 4,since if d(s) = 3 then we have s 2 Y1 \ Y2, as noted above. Since Y1 [ Y2 = V � t, wehave s 2 Y2. If jX \ Y2j � 2 then we are done, as above, by choosing X� = X [ Y2.EGRES Technical Report No. 2008-09



Section 4. Admissible nodes 16
Figure 7: A direction balanced mixed circuit with no admissible nodes.Thus we may suppose that X\Y2 = fsg. Since Y1[Y2 = V �t and N(t)\Y1\X = ;,this implies jXj < jY1j. Thus if Y1 is mixed, the lemma follows by choosing X� = Y1.Otherwise the de�nition of a 
ower implies that Y2 is mixed. Since X \ Y2 6= ;, weobtain that X [ Y2 is mixed critical by Lemma 2.3(a). Thus X� = X [ Y2 is mixedt-node-critical set which properly contains X, as required. �Theorem 4.9. Let G = (V ;D;L) be a balanced mixed circuit with jV j � 4. Then Ghas an admissible node.Proof: For a contradiction suppose that G is a balanced mixed circuit without ad-missible nodes. Since G is a circuit, it has at least two nodes. Hence, by Lemma3.4, the node subgraph of G is a non-empty forest. Let v be a leaf node of G. SincejV j � 4 and G is balanced, it follows from Lemmas 4.5,4.6, and 4.7 that there existsa 
ower on v. Hence there exists a mixed v-node-critical set Xv. Choose a maximumsize mixed node-critical set Xw with respect to some node w. Since Xw +w is mixedcritical, Lemma 3.5 implies that there is a node in V �w�Xw. Since G[V3] is a forestwe can deduce that one of the two alternatives of Lemma 4.8 must hold. Thus thereis mixed critical node-critical set X� with jX�j > jXwj. This contradicts the choice ofXw and completes the proof. �The mixed circuit in Figure 7 shows that the hypothesis of Theorem 4.9 that G isbalanced cannot be weakened to direction (or length) balanced.We may strengthen Theorem 4.9 by using the following result on the existence ofadmissible nodes in pure circuits (where a node in a pure circuit G is admissible ifsome 1-reduction of G at v results in a smaller pure circuit).Theorem 4.10. [1] Let G be a pure circuit with at least �ve vertices and x; y; z bevertices of G with xy an edge of G. Then G has an admissible node distinct fromx; y; z.Theorem 4.11. Let G = (V ;D;L) be a mixed circuit with jV j � 4. Then either Gcan be expressed as a 2-sum of a mixed circuit with a pure K4, or G has an admissiblenode.Proof: Suppose that G has no admissible nodes. By Theorem 4.9 this implies thatthere is a 2-separation (H1; H2) in G for which H2 is pure. Choose the 2-separationso that H2 is minimal. Let V (H1) \ V (H2) = fa; bg. Then H 0 is a 3-connected purecircuit, where H 0 is obtained from H2 by adding an edge ab whose type is the sameEGRES Technical Report No. 2008-09



Section 5. Feasible nodes 17as that of H2. If jV (H 0)j = 4 then H 0 is isomorphic to K4 are the theorem follows.Suppose that jV (H 0)j � 5 holds. Then Theorem 4.10 implies that H 0 has an admissi-ble node v, di�erent from a; b. Let H 0v obtained from H 0 by an admissible 1-reductionat v. Since the 2-sum of H1 and H 0v is a mixed circuit, it follows that v is admissiblein G, a contradiction. This completes the proof. �Theorem 4.11 and Lemmas 3.6 and 3.7 lead to the following inductive constructionfor mixed circuits, and hence solve an open problem raised by Servatius and Whiteleyin [16].Theorem 4.12. Let G be a mixed circuit. Then G can be obtained from K+3 or K�3by a sequence of 1-extensions and 2-sums with pure K4's.We close this section with one more lemma on admissible mixed nodes, which wewill need for our characterization of globally rigid circuits.Lemma 4.13. Let G = (V ;D;L) be a direction balanced mixed circuit and v be amixed node of G. Suppose that Gxyv is an admissible length 1-reduction at v. Supposefurther that Gxyv contains a 2-separation (H1; H2) in which H2 is length pure andxy 2 E(H2). Then there is an admissible direction 1-reduction at v.Proof: First suppose v has only two neighbours x; y. Since the 1-reduction on xy isadmissible, there is no mixed critical set in G� v containing x; y. Since G is directionbalanced, at least one of x or y is in V (H2) � V (H1). Hence there is no directioncritical containing x; y. Thus Gxyv is also an admissible direction 1-reduction at v.Now suppose N(v) = fu; w; tg and V (H1) \ V (H2) = fa; bg. Since G is directionbalanced, we may assume that t 2 V (H2) � V (H1). Suppose that the direction 1-reductions on t; u and t; w are both non-admissible. Since all edges incident to t inG�v are length edges there exists no direction critical set in G�v containing t. Thuswe must have two mixed critical sets X; Y in G� v with fu; tg � X, X � V � v�w,fw; tg � Y , Y � V �v�u. Since H2 is length pure, it follows from Lemma 2.5(ii) thatwe must have fa; bg � X \ Y . This implies N(v)\ fa; bg = ;, so both end-vertices ofthe edge created by the 1-reduction must be in V (H2)�V (H1). By symmetry this im-plies that we also have a mixed critical set Z in G�v with fu; wg � Z, Z � V �v� t,contradicting the assumption that v is admissible. �5 Feasible nodesWe saw in Lemma 1.6(c) that globally rigid generic mixed frameworks are directionbalanced. We shall show in the next section that this necessary condition for globalrigidity is also suÆcient when the underlying graph is a mixed circuit. Our proofuses induction on the size of the circuit and relies on the recursive construction fordirection balanced mixed circuit which we will derive in this section.A 1-reduction in a direction-balanced mixed circuit G is feasible if it results in asmaller direction-balanced mixed circuit. We say that a node v of G is feasible if ithas a feasible 1-reduction, and otherwise that v is infeasible.EGRES Technical Report No. 2008-09



Section 5. Feasible nodes 18Lemma 5.1. Let v be an admissible node of a direction-balanced mixed circuit G andGv be the mixed circuit obtained by performing an admissible 1-reduction at v. Supposethat Gv is not direction balanced. Then Gv has a 2-separation (H1; H2) such that H2is length pure. Furthermore, for every such 2-separation of Gv, H2 � H1 contains aneighbour of v, and, if v is length pure, then H1 �H2 also contains a neighbour of v.Proof: Since Gv is not direction balanced, Gv has a 2-separation (H1; H2) where H2is length pure. Since G is direction-balanced, (H1 + v;H2) is not a 2-separation of Gand hence H2�H1 contains a neighbour of v. If v is length pure then (H1; H2+ v) isnot a 2-separation of G and hence H1 �H2 contains a neighbour of v. �Theorem 5.2. Suppose G is a direction-balanced mixed circuit with at least fourvertices. Then either G can be expressed as a 2-sum of a direction-balanced circuitand a direction pure K4, or G has a feasible node.Proof: We proceed by contradiction. Suppose the theorem is false and let G be acounterexample.Suppose that G = G1 �2 G2 for some mixed circuit, G1, and pure K4, G2. SinceG is direction-balanced, G2 must be direction-pure. The fact that G is directionbalanced now implies that G1 is direction-balanced. This contradicts the fact that Gis a counterexample. Thus G cannot be expressed as a 2-sum of a mixed circuit anda pure K4, and hence G has an admissible node by Theorem 4.11.We say that an admissible 1-reduction of G at a node v is acceptable if it is anadmissible direction 1-reduction at v if such a splitting exists (and is an admissiblelength 1-reduction when no admissible direction 1-reduction at v exists). Choose anacceptable 1-reduction Gx;yw of G and a direction unbalanced 2-separation (H1; H2)of Gx;yw such that H2 is length pure and H2 has as few vertices as possible. LetV (H1) \ V (H2) = fu; vg and NG(w) = fx; y; zg. Let Gi be obtained by adding alength edge uv to Hi for each i 2 f1; 2g. Using Lemma 3.7 and the minimality of H2we have:Claim 5.3. G1 is a mixed circuit and G2 is a 3-connected length-pure circuit.We shall prove that H2 contains a feasible node of G.Claim 5.4. Either fx; y; zg \ V (H1 � H2) 6= ; or fu; vg = fx; yg and Gx;yw is adirection 1-reduction of w onto xy.Proof: Suppose the claim is false. Since G is direction balanced, and H2 is lengthpure, w must be a mixed node of G and xy must be a length edge of Gx;yw . Lemma 4.13now implies that G has an admissible direction 1-reduction at w which contradictsthe fact that Gx;yw is an acceptable 1-reduction of G. �Claim 5.5. No node of G2 in V (G2)� fu; v; x; y; zg is admissible.EGRES Technical Report No. 2008-09



Section 5. Feasible nodes 19Proof: Suppose b 2 V (G2)� fu; v; x; y; zg is an admissable node of G2. Let (G2)c;dbbe an admissible 1-reduction of G2. Then (G2)c;db is a length pure circuit. By Lemma3.7(a), H = G1 �2 (G2)c;db = (Gx;yw )c;dbis a mixed circuit. Since Gc;db is a 1-extension of H, Lemma 3.6 implies that Gc;db is amixed circuit and hence Gc;db is an admissible 1-reduction in G. Since b is a length-pure node of G, Gc;db is acceptable. Lemma 5.1 implies that Gc;db has a 2-separation(H 01; H 02) where H 02 is length-pure and both H 01�H 02 and H 02�H 01 contain a neighbourof b. We may suppose that (H 01; H 02) has been chosen such that H 02 is minimal. LetV (H 01)\V (H 02) = fu0; v0g. Since u0; v0 have degree at least four in Gc;db by Lemma 3.7,they have degree at least four in G. Thus w 62 fu0; v0g.Since fu0; v0g is a 2-vertex-cut of Gc;db , it is also a 2-vertex-cut of H. Similarly fu; vgis a 2-vertex-cut of H. Since (G2)c;db is a circuit, it is 2-connected by Lemma 3.3. Thus(G2)c;db �u and (G2)c;db �v are both connected. Since NG(b) � V (G2), and since fu0; v0gseparates two of the neighbours of b in Gc;db , we must have either fu0; v0g = fu; vg orfu0; v0g \ (V (G2) � fu; vg) 6= ;. Applying Lemma 3.8 to H if the latter alternativeholds, we have fu0; v0g � V (G2) in both cases. Thus V (H1) � V (H 01). If the �rstalternative of Claim 5.4 holds, then w is adjacent to at least one vertex of H1�H2. Ifthe second alternative of Claim 5.4 holds, then w is not a length pure node of G. Wemay deduce in both cases that V (H1) and w are both contained in H 01. This impliesthat jV (H 02)j < jV (H2)j, which contradicts the minimality of H2. �Claim 5.6. G2 is isomorphic to K4.Proof: Suppose G2 is not isomorphic to K4. By Claim 5.5, all admissible nodesof G2 are in fu; v; x; y; zg. Since uv 2 E(G2), Claim 5.4 and Theorem 4.10 implythat x; y 2 V (G2) � fu; vg, z 62 V (G2) and u; v; x; y are the only admissible nodesin G2. Since Gx;yw is an acceptable 1-reduction of G, Lemma 4.13 implies that w is alength-pure node of G. We shall show that x is a feasible node in G.Since x is an admissible node of G2, (G2)s;tx is a pure circuit for some s; t 2 NG2(x).Let NG2(x) = fq; s; tg. Since xy is an edge of G2 and y is a node of G2, we musthave y 2 fs; tg. Without loss of generality, y = t. By Lemma 3.7(a), H = (Gx;yw )s;yx =G1 � (G2)s;yx , is a mixed circuit. Since Gs;wx is a 1-extension of H, Lemma 3.6 impliesthat Gs;wx is a mixed circuit. Thus x is an admissible node of G. Since x is a length-pure node of G, Gs;wx is an acceptable 1-reduction of G. Lemma 5.1 now implies thatGs;wx has a 2-separation (H 01; H 02) where H 02 is length-pure and H 01 �H 02 and H 02 �H 01both contain a neighbour of x in G. We may suppose that (H 01; H 02) has been chosensuch that H 02 is minimal. Let V (H 01) \ V (H 02) = fu0; v0g. Since u0; v0 have degree atleast four inGs;wx by Lemma 3.7, they have degree at least four inG. Thus w 62 fu0; v0g.We proceed as in the proof of Claim 5.5. Since G is direction-balanced, fu0; v0g sepa-rates w and q in Gs;wx . Since fu0; v0g is a 2-vertex-cut of Gs;wx , it is also a 2-vertex-cut ofH. Similarly fu; vg is a 2-vertex-cut of H. Since (G2)s;yx is a circuit, it is 2-connected.Thus the graph obtained from (G2)s;yx by adding the vertex w and edges sw; sy is 2-connected. Since NG(x) � V (G2), and since fu0; v0g separates two of the neighboursEGRES Technical Report No. 2008-09



Section 5. Feasible nodes 20of x in Gs;wx , we must have either fu0; v0g = fu; vg or fu0; v0g \ (V (G2)� fu; vg) 6= ;.Applying Lemma 3.8 to H if the latter alternative holds, we have fu0; v0g � V (G2) inboth cases. We may now deduce as in the proof of Claim 5.5 that jV (H2)j > jV (H 02)j.This contradicts the minimality of H2. �Claim 5.7. fx; yg 6= fu; vg.Proof: Suppose fx; yg = fu; vg. Since G is direction balanced, z 2 V (H2) � fx; ygand w is not a length pure node of G. Since G1 and G2 are circuits and G2 is lengthpure, Gx;yw is a direction 1-reduction of w onto xy and xy is a direction edge of H1.Let V (H2) = fx; y; z; tg. Then t is a length-pure node of G.Let Gx;yt be obtained by performing a 1-reduction t onto a length edge xy. ThenGx;yt can be constructed from G1 by two 1-extensions. (We �rst delete the directionedge xy, add the vertex z, length edges zx; zy and a direction edge zx. We thendelete the direction edge zx, add w and edges wx;wy; wz of the same type as in G.)Thus Gx;yt is a mixed circuit by Lemma 3.6. Lemma 5.1 now implies that Gu;vt has a2-separation (H 01; H 02) where H 02 is length-pure and both H 01�H 02 and H 02�H 01 containa neighbour of t. This is impossible since the neighbours of t in G induce a completegraph in Gx;yt . Thus fx; yg 6= fu; vg. �Claim 5.8. fx; yg � V (H2) and w is a length-pure node of G.Proof: Suppose that fx; yg 6� V (H2). Since xy is an edge of Gx;yw , we must havefx; yg � V (H1) and z 2 V (H2). Choose t 2 V (H2) � fu; v; zg. We have V (H2) =fu; v; z; tg and t is a length-pure node of G. Let Gu;vt be obtained by performing a1-reduction of t onto a length edge uv. Then Gu;vt can be constructed from G1 by two1-extensions so is a mixed circuit by Lemma 3.6. Lemma 5.1 now implies that Gu;vthas a 2-separation (H 01; H 02) where H 02 is length-pure and both H 01 �H 02 and H 02 �H 01contain a neighbour of t. This is impossible since the neighbours of t in G induce acomplete graph in Gu;vt . Thus fx; yg � V (H2).We may now use Lemma 4.13, Claim 5.7 and the fact that Gx;yw is an acceptable1-reduction of G to deduce that w is length-pure. �Claim 5.9. fx; yg \ fu; vg 6= ;.Proof: Suppose the claim is false. Then x and y are both length-pure nodes of G. LetGw;vx be obtained by performing a 1-reduction of G at x onto a length edge wv. Notethat wv 62 E(G) since the neighbour of w distinct from x; y belongs to H1�H2. Notefurther that Gw;vx can be obtained from G1 by a sequence of two 1-extensions. ThusGw;vx is a mixed circuit by Lemma 3.6. Lemma 5.1 implies that Gw;vx has a 2-separation(H 01; H 02) where H 02 is length-pure and both H 01�H 02 and H 02�H 01 contain neighboursof x. Since each of the neighbours of x in G is a neighbour of y in Gw;vx , we must havey 2 V (H 01)\V (H 02). This contradicts Lemma 3.7(b) since y has degree three in Gw;tx . �EGRES Technical Report No. 2008-09



Section 6. Globally rigid circuits 21We can now complete the proof of the theorem. Using Claims 5.8 and 5.9, andrelabelling if necessary, we may suppose that y = v and V (H2) = fu; y; x; tg. Thus xand t are length-pure nodes of G. Let Gw;tx be obtained by performing a 1-reduction ofG at x onto a length edge wt. Note that wt 62 E(G) since the neighbour of w distinctfrom x; y belongs to H1 �H2. Note further that Gw;tx can be obtained from G1 by asequence of two 1-extensions. Thus Gw;tx is a mixed circuit by Lemma 3.6. Lemma5.1 implies that Gw;tx has a 2-separation (H 01; H 02) where H 02 is length-pure and bothH 01 � H 02 and H 02 � H 01 contain neighbours of x. Since both the neighbours of x inG� t are neighbours of t in Gw;tx , we must have t 2 V (H 01)\ V (H 02). This contradictsLemma 3.7(b) since t has degree three in Gw;vx . �Theorem 5.10. Let G = (V ;D;L) be a mixed graph. Then G is a direction-balancedmixed circuit if and only if G can be obtained from K+3 or K�3 by 1-extensions and2-sums with direction-pure K4's.Proof: It is easy to see that the operations of 1-extension and taking a 2-sum witha direction-pure K4 preserve the property of being a direction-balanced circuit. Wemay verify the reverse implication by induction on jV j using Theorem 5.2. �6 Globally rigid circuitsWe can now obtain our promised characterization of generically globally rigid mixedcircuits. We need one �nal lemma.Lemma 6.1. Suppose G is a mixed graph and G = G1�2G2 where G2 is a direction-pure K4. Let (G; p) be a generic realization of G and p1 be the restriction of p to G1.If (G1; p1) is globally rigid, then (G; p) is globally rigid.Proof: It is straightforward to check that G can be constructed from G1 by a direc-tion 1-extension and a direction 0-extension. The lemma follows since these operationspreserve global rigidity by Theorem 1.7 and Theorem 1.8, respectively. �Theorem 6.2. Let (G; p) be a generic realization of a mixed circuit. Then (G; p) isglobally rigid if and only if G is direction-balanced.Proof: Necessity follows from Lemma 1.6(c). SuÆciency follows from Theorem 5.10using the facts that both the mixed circuits with three vertices are globally rigid, andthat the operations of 1-extension and 2-sum with a direction-pure K4 preserve globalrigidity by Theorem 1.7 and Lemma 6.1, respectively. �
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Section 7. Concluding remarks 227 Concluding remarksThere exist eÆcient algorithms to check whether the sparsity conditions (1) or (2)are satis�ed (in the underlying unlabeled graph H of G). Condition (1) holds ifand only if the edge set of H can be covered by two forests, which can be tested inO(n3=2 logn2=m) time [5], where n and m denote the number of vertices and edges,respectively. Condition (2) is equivalent to independence in the well-known lengthrigidity matroid and can be tested in O(n2) time, see [2] and the references therein.By using these algorithms one can test independence in the mixed rigidity matroid,check whether a given mixed graph G is a mixed (or pure) circuit, and obtain theinductive construction of Theorem 4.12 in polynomial time.Testing whether G is direction balanced can be done in linear time. This follows byobserving that G is direction balanced if and only if all 2-separations (H1; H2) in whichH2 is minimal are direction balanced. It is straightforward to obtain these special 2-separations from the cleavage units (or 3-connected components) of H, which can belisted in O(n+m) time [9]. Thus one can also check whether G is a direction balancedmixed circuit and obtain the inductive construction of Theorem 5.10 in polynomialtime.We remark that the results of this paper, together with [11], can be used to char-acterize the `globally linked pairs', the `globally rigid clusters', and the `uniquelylocalizable vertices' in mixed circuits, c.f. [12].7.1 Strongly globally rigid frameworksLet G = (V ;D;L) be a mixed graph and (G; p), (G; q) be 2-dimensional mixed frame-works. Let us say (G; p) and (G; q) are strongly equivalent if edges in L have thesame length and edges in D have the same `oriented direction', i.e. p(u) � p(v) =k(q(u) � q(v)) for some k > 0. We can also de�ne strong rigidity and strong globalrigidity. Clearly strong rigidity is the same as rigidity, but this is not true for globalrigidity. We can observe that strong global rigidity is not a generic property. Forexample let (H; p) be strongly globally rigid and let (G; p0) be obtained from (H; p)by a 0-extension which adds a vertex v incident with one length edge vu and onedirection edge vw. Then the strong global rigidity of (G; p0) depends on the ratio ofthe length of vu and the distance between u and w.References[1] A.R. Berg and T. Jord�an, A proof of Connelly's conjecture on 3-connected circuitsof the rigidity matroid, J. Combinatorial Theory, Ser. B., Vol. 88, 77-97, 2003.[2] A.R. Berg and T. Jord�an, Algorithms for graph rigidity and scene analysis, Proc.11th Annual European Symposium on Algorithms (ESA) 2003, (G. Di Battista, U.Zwick, eds) Springer Lecture Notes in Computer Science 2832, pp. 78-89, 2003.[3] R. Connelly, Generic global rigidity, Discrete Comput. Geom. 33 (2005), no. 4,549{563. EGRES Technical Report No. 2008-09
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