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H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Rigid components in molecular

graphs

Bill Jackson and Tibor Jordán

March 23, 2006



EGRES Technical Report No. 2006-03 1

Rigid components in molecular graphs

Bill Jackson⋆ and Tibor Jordán⋆⋆

Abstract

In this paper we consider 3-dimensional generic bar-and-joint realizations of
squares of graphs. These graphs are also called molecular graphs due to their
importance in the study of flexibility in molecules. The Molecular Conjecture,
posed in 1984 by T-S. Tay and W. Whiteley, indicates that determining rigidity
(or more generally, computing the degree of freedom) of squares of graphs may
be tractable by combinatorial methods. We show that the truth of the Molecular
Conjecture would imply an efficient algorithm to identify the maximal rigid
subgraphs of a molecular graph. In addition, we prove that the truth of two
other conjectures in combinatorial rigidity (due to A. Dress and D. Jacobs,
respectively) would imply the truth of the Molecular Conjecture.

1 Introduction

All graphs considered are finite and without loops. We will reserve the term graph for
graphs without multiple edges and refer to graphs which may contain multiple edges
as multigraphs. Let R(G) denote the 3-dimensional generic bar-and-joint rigidity
matroid of G, defined on ground-set E. (See [8, 18] for the definition of R(G).) We
denote the rank function of R(G) by rG and rG(E) by r(G). By a result of Gluck [5] a
graph G = (V,E) on at least three vertices has r(G) ≤ 3|V | − 6. A graph G = (V,E)
is said to be rigid if either G is a complete graph on at most two vertices, or |V | ≥ 3
and r(G) = 3|V | − 6. It is a difficult open problem to determine which graphs are
rigid. For a survey and partial results see [3, 6, 7, 8, 9, 18].

The square of a graph G = (V,E) is denoted by G2, and the multigraph obtained
from G by replacing each edge e ∈ E by five copies of e is denoted by 5G. Squares
of graphs are sometimes called molecular graphs, because they are used to study
the flexibility of molecules, particularly biomolecules such as proteins [12, 17, 22].
The Molecular Conjecture, due to Tay and Whiteley [16, Conjecture 1], see also
[13, 18, 19, 20, 21, 22], indicates that the problem of determining when molecular
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Figure 1: A graph G and its square G2.

graphs are rigid (or more generally, finding their maximal rigid subgraphs) may be
significantly easier than the problem for arbitrary graphs. For a substantial collection
of supporting evidence for the Molecular Conjecture see [22].

This conjecture appears in the literature in several different forms, and is typi-
cally formulated in terms of ‘body-and-hinge frameworks’. In this paper we shall
be concerned with bar-and-joint frameworks. Conjectures 1.1 and 1.2 below are the
bar-and-joint versions of the Molecular Conjecture.

Conjecture 1.1. Let G be a graph with minimum degree at least two. Then G2 is
rigid if and only if 5G contains six edge-disjoint spanning trees.

The ‘defect form’ of Conjecture 1.1 is the following. Let G = (V,E) be a graph.
For a family F of pairwise disjoint subsets of V let EG(F) denote the set, and eG(F)
the number, of edges of G connecting distinct members of F . For a partition P of V
let

defG(P) = 6(|P| − 1) − 5eG(P)

denote the deficiency of P in G and let

def(G) = max{defG(P) : P is a partition of V }.

Note that def(G) ≥ 0 since defG({V }) = 0.

Conjecture 1.2. [10] Let G = (V,E) be a graph with minimum degree at least two.
Then

r(G2) = 3|V | − 6 − def(G). (1)

We showed in an earlier paper [10] that Conjectures 1.1 and 1.2 are equivalent. We
also showed that the right hand side of (1) is an upper bound on the rank of G2.

Theorem 1.3. [10] Let G = (V,E) be a graph of minimum degree at least two. Then

r(G2) ≤ 3|V | − 6 − def(G).
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In this paper we shall prove a number of structural properties of maximal rigid
subgraphs of a molecular graph. Based on these results, we show that the truth of
the Molecular Conjecture would imply an efficient algorithm which can identify these
subgraphs by finding the maximal subgraphs of 5G which contain six edge-disjoint
spanning trees. Jacobs [11] gives a different algorithm for finding the maximal rigid
subgraphs of a molecular graph (see also [12]), but there is no rigorous proof for the
correctness of his algorithm even if we assume that the Molecular Conjecture is true.

In addition, we prove that the truth of two other conjectures in combinatorial
rigidity (due to Dress and Jacobs, respectively) would imply the truth of the Molecular
Conjecture.

2 Preliminaries

Let G = (V,E) be a multigraph. For X ⊆ V , let EG(X) denote the set, and iG(X)
the number, of edges in G[X], that is, in the subgraph induced by X in G. For X ⊂ V
let dG(X) = eG(X,V − X) denote the degree of X. If X = {v} for some v ∈ V then
we simply write dG(v) for the degree of v. The set of neighbours of X (i.e. the set
of those vertices v ∈ V − X for which there exists an edge uv ∈ E with u ∈ X) is
denoted by NG(X). We use E(X), i(X), d(X), or N(X) when the multigraph G is
clear from the context. A graph G = (V,E) is M-independent, or an M-circuit if E
is independent, respectively a circuit, in R(G).

We shall use the following concepts and basic results from graph (rigidity) theory.

Lemma 2.1. [18, Lemma 9.1.3] Let H = (V,E) be a graph and v1, v2, . . . vs be distinct
vertices of G for some s ∈ {1, 2, 3}. Let G be obtained from H by adding a new vertex
v and all edges vvi for 1 ≤ i ≤ s. Then G is M-independent if and only if H is
M-independent.

Lemma 2.2. [18, Lemma 9.2.2] Let H = (V,E) be an M-independent graph and
vi ∈ V be distinct vertices for 1 ≤ i ≤ 4. Suppose v1v2 ∈ E. Let G be obtained
from H − v1v2 by adding a new vertex v and all edges vvi for 1 ≤ i ≤ 4. Then G is
M-independent.

We refer to the operations in Lemmas 2.1 and 2.2 as 0-extensions and 1-extensions,
respectively.

Lemma 2.3. [10] Let H = (V,E) be an M-independent graph and
{u1, u2}, {v1, v2} and {w1, w2} be three sets of distinct vertices of G with
|{u1, u2, v1, v2, w1, w2}| ≥ 3. Let G be obtained from H by adding three new ver-
tices u, v, w, the edges uv, vw, uw, and all edges uui, vvi, wwi for 1 ≤ i ≤ 2. Then G
is M-independent.

We refer to the operation in Lemma 2.3 as a triangle-extension.

Lemma 2.4. [18, Lemma 11.1.9] (a) If |V (G1) ∩ V (G2)| ≥ 3 and G1, G2 are rigid
then G1 ∪ G2 is rigid.
(b) If G is rigid and has at least four vertices then G is 3-connected.
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Section 3. Rigid components of molecular graphs 4

Lemma 2.5. Let G1, G2 be rigid graphs with |V (G1) ∩ V (G2)| = 2. Let H = G1 ∪
G2 ∪ {uv} for some u ∈ V (G1) − V (G2) and v ∈ V (G2) − V (G1). Then H is rigid.

Proof: We may suppose that G1, G2 are minimally rigid. Let V (G1∩G2) = {x1, x2}.
The rigidity of G2 implies that vxi is contained in an M -circuit Ci in G2 + vxi,
for i ∈ {1, 2}. Let H1 = G1 + v + {vu, vx1, vx2} and H2 = G2 + {vx1, vx2}. The
rigidity of G1, G2 and Lemma 2.1 imply that H1 and H2 are both rigid. Thus
H1 ∪ H2 is rigid by Lemma 2.4(a). The existence of the M -circuits C1, C2 implies
that H = (H1 ∪ H2) − {vx1, vx2} is also rigid. •

A cover of a graph G = (V,E) is a collection X of subsets of V , each of size at
least two, such that ∪X∈XE(X) = E. A cover X = {X1, X2, . . . , Xm} of G is t-thin
if |Xi ∩ Xj| ≤ t for all 1 ≤ i < j ≤ m. For Xi ∈ X let f(Xi) = 1 if |Xi| = 2 and
f(Xi) = 3|Xi| − 6 if |Xi| ≥ 3. Given a 2-thin cover X of G, let Θ(X ) be the set of
all pairs of vertices uv such that Xi ∩ Xj = {u, v} for some 1 ≤ i < j ≤ m. For each
uv ∈ Θ(X ) let θ(uv) be the number of sets Xi in X such that {u, v} ⊆ Xi and put

val(X ) =
∑

X∈X

f(X) −
∑

uv∈Θ(X )

(θ(uv) − 1). (2)

For u, v ∈ V , the edge uv is an implied edge of G if uv 6∈ E and r(E + uv) = r(E).
The closure Ĝ of G is the graph obtained by adding all the implied edges to G. A
rigid cluster of G is a set of vertices which induce a maximal complete subgraph of
Ĝ. Using Lemma 2.4(a), we can see that any two rigid clusters of G intersect in at
most two vertices. Thus the set of rigid clusters of G is a 2-thin cover of G. At a
conference on rigidity held in Montreal in 1987, Dress conjectured that the value of
this special 2-thin cover is equal to the rank of G.

Conjecture 2.6. (see [6, Conjecture 5.6.1],[2], and [15, Conjecture 2.3]) Let G =
(V,E) be a graph and X be the set of rigid clusters of G. Then

r(G) = val(X ). (3)

We say that a cover X of a graph G = (V,E) is independent if the graph (V, Θ(X ))
is M -independent. The following lemma shows that independent covers of G can be
used to give an upper bound on r(G).

Lemma 2.7. [8, Lemma 3.2] Let G = (V,E) be a graph, and X be an independent
2-thin cover of G. Then r(G) ≤ val(X ).

Remark The proof given for Lemma 2.7 in [8] shows that it remains true under the
weaker hypothesis that the subgraph of (V, Θ(X )) induced by X is M -independent
for all X ∈ X .

3 Rigid components of molecular graphs

We call the inclusionwise maximal rigid subgraphs of a graph H, the rigid components
of H. Each rigid component is clearly an induced subgraph of H.
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Section 3. Rigid components of molecular graphs 5

We first verify a number of properties of the rigid components of a molecular graph.
We assume throughout this section that G = (V,E) is a connected graph with |V | ≥ 3
and with minimum degree at least two, and G2 is its square. We refer to the edges in
E(G2) − E(G) as new edges of G2.

Lemma 3.1. Let C be a rigid component of G2 and let Y = V (C). Then
(a) |Y | ≥ 3,
(b) dG[Y ](v) ≥ 1 for all v ∈ Y ,
(c) G[Y ] is connected,
(d) dG[Y ](v) = 1 for all v ∈ NG(V − Y ).

Proof: (a) This follows from the fact that each edge of G2 belongs to a triangle and
hence to a rigid subgraph with three vertices.

(b) Suppose that all the edges incident to v in G2[Y ] are new edges. The new edges
of G2 are ‘generated’ by pairs of edges of G, and, by our assumption, these edges
cannot be in G[Y ]. First suppose |Y | ≥ 4. Then we have (at least) three new edges
e, f, g incident to v in G2[Y ]. By considering the pairs of edges of G which ‘generate’
e, f, g, and the edges that these pairs ‘generate’ in V − Y , it is easy to check that
either there is a vertex y ∈ V − Y connected to Y by three edges in G2, or there
is a triangle T in G2 − Y which satisfies the hypotheses of Lemma 2.3 in G2. This
contradicts the maximality of C by Lemma 2.1 or Lemma 2.3. Next suppose |Y | = 3.
The proof of this case is similar by considering the two new edges e, f incident to v
in G2 as well as the third edge g of G2[Y ].

(c) Consider a connected component D of G[Y ]. By (b) each vertex of D is incident
to an edge in G[Y ]. Let uv, vw be a pair of edges in E which ‘generate’ a new edge
uw connecting D and G[Y ] − D. We must have v ∈ V − Y and we can easily see
that v must be connected to Y by at least three edges in G2. This contradicts the
maximality of C by Lemma 2.1.

(d) Let uv ∈ E with v ∈ Y and u ∈ V − Y . We have dG[Y ](v) ≥ 1 by (b). If
dG[Y ](v) ≥ 2 then u must be connected to Y by at least three edges in G2, a
contradiction by Lemma 2.1 and the maximality of C. Thus dG[Y ](v) = 1. •

Lemma 3.2. Suppose that G2 is not rigid. Let C1, C2 be distinct rigid components of
G2 with Y1 = V (C1), Y2 = V (C2) and Y1 ∩ Y2 = {u, v}. Then
(a) uv ∈ E,
(b) dG[Y1](u) = 1 and dG[Y2](v) = 1 (or dG[Y2](u) = 1 and dG[Y1](v) = 1),
(c) uv is contained in no rigid components of G other than C1, C2.

Proof: The maximality of C1, C2 implies that Y1 − Y2 6= ∅ 6= Y2 − Y1. Part (a)
follows from Lemma 3.1(b), Lemma 2.5, and the maximality of C. Part (b) follows
in a similar way from Lemma 2.5. Part (c) follows from (b) and Lemma 3.1(a),(c). •

Lemma 3.3. Suppose that G2 is not rigid. Let C1, C2 be distinct rigid components of
G2 with Y1 = V (C1), Y2 = V (C2) and Y1 ∩ Y2 = {v}. Then dG[Y1](v) = 1 = dG[Y2](v).
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Proof: The lemma follows from Lemma 3.1(b), Lemma 2.1, and the maximality of
C. •

It follows from the fact that every edge is contained in a rigid component, and
Lemma 2.4(a), that the vertex sets of the rigid components of a graph H form a
2-thin cover of H. We will abuse our notation and use val(C) to denote the value of
this 2-thin cover.

Lemma 3.4. Suppose that G2 is not rigid. Let C = {C1, C2, . . . , Ct} be the set of rigid
components of G2. For all 1 ≤ i ≤ t, let Yi = V (Ci) and let Qi = Yi−{v : dG[Yi] = 1}.
Put Q = {Q1, Q2, ..., Qt}. Then
(a) Q is a partition of V ,
(b) val(C) = 3|V | − 6 − defG(Q),
(c) r(G2) ≤ val(C).

Proof: (a) By Lemma 3.1(a), (c), Qi 6= ∅ for all 1 ≤ i ≤ t. Choose v ∈ V . Since
dG(v) ≥ 2, v is contained in a triangle in G2 and hence in at least one member of
Q. On the other hand, Lemmas 3.2(b) and 3.3 imply that v does not belong to two
different members of Q. Thus Q partitions V .

(b) By Lemma 3.1(a) we have |Yi| ≥ 3 for all 1 ≤ i ≤ t. By Lemma 3.2(a),(c) we
have uv ∈ E and θ(uv) = 2 for all uv ∈ Θ(C). By Lemma 3.2(b) and the definition
of Q we have EG(Q) = Θ(C). Lemma 2.1 implies that NG(Qi) ⊆ Yi and hence
|Yi| = |Qi| + dG(Qi) for all 1 ≤ i ≤ t. Thus val(C) =

∑

Ci∈C
(3|Yi| − 6) − |Θ(C)| =

3|V | + 6eG(Q) − 6t − eG(Q) = 3|V | − 6 − defG(Q).

(c) Theorem 1.3 and (b) now imply

r(G2) ≤ 3|V | − 6 − def(G) ≤ 3|V | − 6 − defG(Q) = val(C).

•

We will refer to the partition Q defined in Lemma 3.4 as the partition of V generated
by the rigid components of G2.

Remark: Let Hi be the subgraph of (V, Θ(C)) induced by V (Ci) for all Ci ∈ C. Then
each Hi is a forest by Lemma 3.2(b) and hence is M -independent. Thus r(G2) ≤
val(C) also follows from the stronger version of Lemma 2.7 described in the remark
after the statement of Lemma 2.7.

We conjecture that equality holds in Lemma 3.4(c).

Conjecture 3.5. Let G be a graph of minimum degree at least two. Then r(G2) =
val(C).

We will show in the next section that this conjecture is equivalent to Conjecture
1.2.

Note that there exist examples of a graph H whose set of rigid components C
satisfies r(H) < val(C).1 It is conceivable, however, that r(H) ≤ val(C) holds for all
graphs H.

1Let G0 = (V0, E0) be a complete graph on five vertices with V0 = {vi : 1 ≤ i ≤ 5}. For
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Section 4. Bricks and rigid components 7

Figure 2: The brick partition and the superbrick partition of graph G.

4 Bricks and rigid components

Let G = (V,E) be a graph of minimum degree two. In this section, we consider
the relationship between the partition Q of V generated by the rigid components of
G2 and another partition of V . We say that the graph G is strong if 5G has six
edge-disjoint spanning trees. A subgraph H is a brick of G if H is a maximal strong
subgraph of G. Thus bricks are induced subgraphs of G. It was shown in [10] that the
vertex sets of the bricks of G = (V,E) partition V . We shall refer to this partition of
V as the brick partition of G. We illustrate the brick partition of a graph in Figure 2.
(We also give the ‘superbrick partition’, which is a refinement of the brick partition
defined at the end of this section.) We showed in [10] that the brick partition B of G
satisfies defG(B) = def(G). We shall prove that Q is a refinement of B, and that, if
Conjecture 1.1 is true, then Q = B.

Let L(H) denote the vertices of degree one in graph H.

Lemma 4.1. Let G be a graph, C be a rigid component of G2, Y = V (C) and
X = Y − L(G[Y ]). Then G[X]2 is rigid and G[X] is strong.

Proof: Since C is a rigid component of G2, it follows from Lemma 2.1, Lemma
3.1 (a),(c), and the maximality of C that |Y | ≥ 3, G[Y ] is connected, and G2[Y ] =
G[Y ]2. Since Y −X = L(G[Y ]), we also have G[X] is connected and G2[X] = G[X]2.
Furthermore, either |X| = 1, or |X| ≥ 3 and dG[X](v) ≥ 2 for all v ∈ X (since the
end-vertices of a cut-edge in G[X] would form a separating pair in C, and, by Lemma
2.4(b), this would contradict the fact that C is rigid). If |X| = 1 then G[X]2 is rigid
and G[X] is strong by definition. Hence we may suppose that |X| ≥ 3.

Consider a set of vertices W ⊆ Y −X whose unique neighbour in G[Y ] is the same
vertex v. Then v ∈ X and dG[X](v) ≥ 2, so G2[{v} ∪ NG[X](v)] is a complete graph

1 ≤ i < j ≤ 5 let Gi,j = (Vi,j , Ei,j) be a complete graph on five vertices with Vi,j ∩ V0 = {vi, vj} and

Ei,j ∩ E0 = {vivj} for 1 ≤ i < j ≤ 5. Let G =
(

G0 ∪ (
⋃

1≤i<j≤5
Gi,j)

)

− E0. It can be seen that

r(G) ≤ |E(G)| − 1 = 89. On the other hand, the set of rigid components of G is C = {Vi,j : 1 ≤ i <

j ≤ 5} and we have val(C) = 90. See [9, Example 3] for more details.
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Section 4. Bricks and rigid components 8

Kv on at least three vertices. Thus we may choose a basis Bv for R(Kv), and hence a
basis B for R(C), in which each vertex w ∈ W has degree exactly three and there are
no edges between vertices in W . Since C is rigid, Lemma 2.1 now implies that C −W
is also rigid. This argument may be repeated for each group of vertices W ′ ⊆ Y − X
with a common neighbour to deduce that G[X]2 = G2[X] = C − (Y − X) is rigid.
Theorem 1.3 now implies that G[X] is strong. •

We showed in [10] that if two strong subgraphs have a non-empty intersection,
then their union is strong. Together with Lemma 4.1, this implies that, for a graph
G = (V,E) of minimum degree at least two, the partition of V generated by the rigid
components of G2 is a refinement of the brick partition of G.

Lemma 4.2. Let G be a graph, B = G[X] be a strong subgraph of G and Y =
X ∪ NG(X). Suppose that Conjecture 1.1 holds for B. Then G[Y ]2 is rigid.

Proof: If |X| = 1 then G[Y ]2 is a complete graph, and hence is rigid. Suppose
|X| ≥ 3. Since B is strong, B has minimum degree at least two. By Conjecture 1.1,
G[X]2 is rigid. Thus G[Y ]2 is rigid by Lemma 2.1. •

Lemma 4.3. Let G be a graph of minimum degree at least two.
(a) Let B = G[X] be a brick of G, Y = X ∪NG(X), and suppose that Conjecture 1.1
holds for B. Then G[Y ]2 is a rigid component of G2.
(b) Let C be a rigid component of G2, Y = V (C), and X = Y − L(G[Y ]). Let B
be the brick of G which contains G[X] and suppose that Conjecture 1.1 holds for B.
Then B = G[X].

Proof: (a) Since G[X] is a brick, each vertex in X has degree at least two in G[Y ]
(if X is non-trivial, each vertex has degree at least two already in G[X]; if X is
trivial, it follows from the fact that G has minimum degree at least two). By Lemma
4.2, G[Y ]2 is rigid. Let C be the rigid component of G2 containing G[Y ]2 and let
Y ′ = V (C). Suppose Y ′ − Y 6= ∅. By Lemma 4.1, X ′ = Y ′ − L(G[Y ′]) is strong.
Now X ⊆ X ′ since X ∩ L(G[Y ′]) = ∅. Since X is a brick, we must have X = X ′ and
hence Y = Y ′. Thus G2[Y ] is a rigid component of G2. Since B is a brick, it is easy
to see that G2[Y ] = G[Y ]2.

(b) Since C is a rigid component of G2, Lemma 4.1 implies that G[X] is strong. Let
X ′ = V (B). By Lemma 4.2, G[X ′ ∪ NG(X ′)]2 is rigid. Since C is a rigid component
of G2, we have |Y | ≥ 3 by Lemma 3.1(a). Since Y ⊆ X ′ ∪ NG(X ′) and C is a rigid
component, we have X ′ ∪ NG(X ′) = Y . Thus X ′ ⊆ Y . But dG[Y ](v) = 1 for all
v ∈ Y − X, since Y − X = L(G[Y ]). Since X ′ ⊆ Y and G[X ′] is a brick, we must
have v /∈ X ′ for all v ∈ Y − X. Thus X ′ = X and B = G[X]. •

By Lemmas 4.2 and 4.3 we obtain:

Corollary 4.4. Suppose that Conjecture 1.1 holds. Let G = (V,E) be a graph of
minimum degree at least two. Then for each rigid component C of G2 there is a brick
B = G[X] of G with C = G[X ∪ NG(X)]2, and for each brick B = G[X] of G the
subgraph G[X ∪ NG(X)]2 is a rigid component of G2.
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Section 5. Rigid clusters 9

Corollary 4.4 immediately implies that if Conjecture 1.1 holds then the partition Q
of V generated by the rigid components of G2 is identical to the brick partition B of
G. We may now deduce:

Corollary 4.5. Conjectures 1.1, 1.2 and 3.5 are all equivalent.

Proof: The fact that Conjectures 1.1 and 1.2 are equivalent follows from [10]. We
show that Conjectures 1.2 and 3.5 are equivalent. Let G = (V,E) be a graph of
minimum degree at least two. Let B be the brick partition of G, C be the set of rigid
components of G2, and Q be the partition of V generated by C.

Suppose Conjecture 1.2 holds. Then r(G2) = 3|V | − 6 − def(G). Since defG(B) =
def(G) by [10], B = Q by the above, and 3|V | − 6 − defG(Q) = val(C) by Lemma
3.4(b), we have r(G2) = val(C). Thus Conjecture 3.5 holds for G.

Suppose, on the other hand, that Conjecture 3.5 holds. Then

r(G2) = val(C) = 3|V | − 6 − defG(Q) ≥ 3|V | − 6 − def(G) ≥ r(G2),

by Lemma 3.4(b), and Theorem 1.3. Thus equality holds throughout and Conjecture
1.2 holds for G. •

It was shown in [10] that, if true, Conjecture 1.2 could be used to determine the
rank of squares of all graphs, not just graphs of minimum degree at least two. It is
also possible to extend the results of Sections 3 and 4 to squares of arbitrary graphs.
We omit the details.

A graph H is called redundantly rigid if H − e is rigid for all e ∈ E(H). In
applications it is sometimes useful to identify the redundantly rigid components (that
is, the maximal redundantly rigid subgraphs) of a molecular graph, see [12].

It would be interesting to find (possibly assuming the truth of Conjecture 1.1)
a connection between the redundantly rigid components of G2 and the ‘superbrick
partition’ of G. We say that G is superstrong if 5G− e has six edge-disjoint spanning
trees for all e ∈ E(5G). A subgraph H of G is said to be a superbrick of G if H is a
maximal superstrong subgraph of G. It was shown in [10] that the vertex sets of the
superbricks of a graph G = (V,E) partition V . We shall refer to this partition of V
as the superbrick partition of G, see Figure 2.

As a first step, one may ask whether the square of a superstrong graph is redun-
dantly rigid. This is not the case in general: consider, for example, the graph G0

consisting of two 4-cycles joined at a cut-vertex. Then G0 is superstrong but G2
0 is

not redundantly rigid since it contains vertices of degree three. It is conceivable, how-
ever, that if G is superstrong and G2 has minimum degree at least four then G2 is
redundantly rigid.

5 Rigid clusters

A (3-dimensional) framework (G, p) is a graph G = (V,E) together with a map
p : V → R3. We say that (G, p) is a generic realization of G if the set of coordinates
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wv

u

Figure 3: A graph H with a rigid cluster U = {u, v, w} for which H[U ] is not rigid.

of all points p(v), v ∈ V , is algebraically independent over Q. A subset U ⊆ V is a
rigid cluster of (G, p) if U is a maximal subset of V with the property that there exists
an ǫ > 0 such that, for all frameworks (G, q) with ‖p(v)− q(v)‖ < ǫ for all v ∈ V and
‖p(v)−p(w)‖ = ‖q(v)−q(w)‖ for all vw ∈ E, we have ‖p(u)−p(u′)‖ = ‖q(u)−q(u′)‖
for all u, u′ ∈ U . (This is equivalent to saying that U is a maximal subset of V with
the property that every ‘continuous deformation’ of (G, p) which preserves the lengths
‖p(v)−p(w)‖ of all edges vw ∈ E, also preserves the distances ‖p(u)−p(u′)‖ between
the points p(u), p(u′) for all u, u′ ∈ U .) It is known that the rigid clusters of (G, p) are
the same for all generic realizations of G, and correspond to the subsets of V defined
as rigid clusters of G in Section 2. Thus we need to determine the rigid clusters of G
in order to fully understand the rigidity of all generic frameworks (G, p).

It is clear that (the vertex set of) each rigid component of G is contained in a rigid
cluster of G. In general G can have rigid clusters which are not vertex sets of rigid
components, see Figure 3.2 Jacobs [11] has conjectured that the rigid clusters of G
are the same as the vertex sets of the rigid components of G when G is a molecular
graph3.

Conjecture 5.1. Let G = (V,E) be a graph and U ⊆ V . Then U is a rigid cluster
of G2 if and only if G2[U ] is a rigid component of G2.

Let G be a graph of minimum degree at least two and C be the set of rigid compo-
nents of G2. The truth of Conjectures 2.6 and 5.1 would imply that r(G2) = val(C).
Thus Conjecture 3.5, and hence also Conjectures 1.1 and 1.2, would follow from Con-
jectures 2.6 and 5.1.

In order to verify Conjecture 5.1, we need to show that r(G2 + uv) = r(G2) if and
only if u, v belong to the same rigid component of G2. It seems difficult to verify this

2Note that the graph on Figure 3 is not a square. This follows, for example, from the simple
observation that if H = G2 for some graph G and H−{u, v} is disconnected for some pair u, v ∈ V (G),
then we would have uv ∈ E(H).

3This conjecture is actually a combination of two statements [11, Observation 3.1, Theorem 4.3]
whose proofs are incomplete.
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even if we assume that the Molecular Conjecture is true, since the graph G2 +uv need
not be a molecular graph.

6 Algorithmic aspects

There is an important consequence of Corollary 4.4 from the algorithmic point of view.
The brick partition can be found in polynomial time (see below). Thus, provided
Conjecture 1.1 is true, we obtain a polynomial time algorithm for finding (the vertex
sets of) all rigid components of G2. This algorithms runs on 5G.

Jacobs [11] has an algorithm, which runs on G2, and identifies its rigid components
(see also [12]). However, there is no rigorous proof for its correctness, even if we
assume that Conjecture 1.1 is true.

The fact that the brick partition of a graph can be computed in polynomial time can
be seen from the following more general argument. Given a multigraph H = (V,E)
we define H to be k-strong, for a positive integer k, if H has k edge-disjoint spanning
trees. The k-brick partition of H is the partition of V into the vertex sets of the
maximal k-strong subgraphs of H. To find the k-brick partition first find a maximum
size subgraph H ′ = (V, I) of H whose edge-set can be decomposed into k forests. This
is the same as finding a basis in matroid Mk(H), which is the matroid union of k
copies of the cycle matroid of H (see [4] for an efficient algorithm).

Since C − e is k-strong for all e ∈ E(C), for all circuits C of Mk(H) (c.f. [18,
Proposition A.1.1]), it is easy to see that the k-brick partitions of H ′ and H are
the same. Since I is independent in Mk(H), we have |EH′(X)| ≤ k|X| − k for all
nonempty X ⊆ V . Furthermore, finding the k-brick of H ′ containing a specified edge
uv ∈ I is then equivalent to finding a maximal subset B ⊆ V which contains u, v and
satisfies |EH′(B)| = k|B|−k. This subroutine is easy to implement by maximum flow
(or bipartite matching, or in-degree constrained orientation) algorithms. There exist
more efficient methods, where the basis I and the k-brick partition of H are built up
simultaneously. We omit the details and refer the reader to [14, Chapter 51] for a
detailed survey and [1, 22] for the orientation-based approach and more references.
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