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Sparse certificates and removable cycles in l-mixed
p-connected graphs

Alex R. Berg? and Tibor Jordán??

Abstract

A graph G = (V,E) is called l-mixed p-connected if G−S−L is connected for
all pairs S, L with S ⊆ V , L ⊆ E, and l|S|+ |L| < p. This notion is a common
generalisation of m-vertex-connectivity (l = 1, p = m) and m-edge-connectivity
(l ≥ m, p = m). If p = kl then we obtain (k, l)-connectivity, introduced earlier
by Kaneko and Ota, as a special case.

We show that by using maximum adjacency orderings one can find sparse
local certificates for l-mixed p-connectivity in linear time, provided the maxi-
mum edge multiplicity is at most l. A by-product of this result is a short proof
for the existence of (and a linear time algorithm to find) a cycle C in an l-mixed
p-connected graph with minimum degree at least p + 2, for which G − E(C)
is l-mixed p-connected. This extends a result of Mader on removable cycles in
k-vertex-connected graphs.

1 Introduction

We consider undirected graphs which may contain multiple edges but not loops. Let
G = (V,E) be a graph and let (A,B,Z) be an ordered partition of V for which
A,B 6= ∅ (but Z may be empty). Then (EG(A,B), Z) is called a mixed cut in G, where
EG(A,B) denotes the set of edges connecting A and B. Let dG(X, Y ) := |EG(X, Y )|.
We say that the mixed cut separates x and y, for some pair x, y ∈ V , if x ∈ A and
y ∈ B (or x ∈ B and y ∈ A) holds. For a positive integer l and for u, v ∈ V let

µl(u, v,G) = min{l|Z|+ dG(A,B) :
(EG(A,B), Z) is a mixed cut separating u, v in G}

be the local l-mixed connectivity between u and v in G. We say that G is l-mixed
p-connected if |V | ≥ p

l
+ 1 and µl(u, v,G) ≥ p for all pairs u, v ∈ V . By Menger’s
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theorem this is equivalent to saying that G − X is (p − l|X|)-edge connected for all
X ⊂ V .

If p = kl, for some positive integer k, then we obtain (k, l)-connectivity (introduced
by Kaneko and Ota [10], see also [3]) as a special case. Even this special case is a
common generalisation of m-vertex-connectivity (by letting l = 1, p = k) and m-edge-
connectivity (l ≥ m, p = m).

First we extend results on ‘sparse certificates’ of vertex- and edge-connectivity to l-
mixed connectivity. A spanning subgraph H = (V, F ) of a graph G = (V,E) is a local
p-certificate of G, for some positive integer p, if µ(u, v,H) ≥ min{µ(u, v,G), p} for all
pairs u, v ∈ V . It follows that if G is l-mixed p-connected then every local p-certificate
H of G is an l-mixed p-connected spanning subgraph. We say that the certificate H
is sparse if |F | = O(pn), where n = |V |. For vertex- and edge-connectivity it is
well-known that sparse local certificates exist, and they can be found in linear time
[2, 4, 5, 13]. They can be used to improve the efficiency of algorithms for various
connectivity problems. Our proofs will rely on a number of observations made in
previous works [5, 6, 8, 14]. In particular, we use ‘MA orderings’ to find the desired
certificates.

Let dG(X) = dG(X,V −X) denote the degree of X. We simply use dG(x) if X = {x}
for some x ∈ V and omit the subscript G if it is clear from the context. An ordering
V = (v1, v2, . . . , vn) of V is a maximum adjacency (MA) ordering of G if

d(Vi, vi+1) ≥ d(Vi, vj) for all 1 ≤ i < j ≤ n, (1)

where Vh = {v1, v2, . . . , vh} for 1 ≤ h ≤ n. An MA ordering of G can be constructed
in O(n + m) time [15]. Let V be a given MA ordering of G. For each vertex vi,
1 ≤ i ≤ n, let the set of edges E(Vi−1, vi) be ordered so that vavi < vbvi whenever
a < b. Let ei,p ∈ E(Vi−1, vi) denote the p’th edge in this ordering (if it exists). Let
Fj = {e2,j, e3,j, . . . , en,j}, 1 ≤ j ≤ |E|. We call Fj the j-th forest of the ordering
in G. Let Gj = (V, F1 ∪ F2 ∪ . . . ∪ Fj) and Ḡj = G − (F1 ∪ F2 ∪ . . . ∪ Fj). An
ordering (v1, v2, . . . , vn) is continuous, if for each componentX ofG there exist integers
1 ≤ s ≤ t ≤ n such that X = {vi : s ≤ i ≤ t}, and for all vi ∈ X with i 6= s there is
an edge vivj with j < i. The next lemma follows easily from the previous definitions,
see also [6, 14, 15].

Lemma 1.1. Let V = (v1, v2, . . . , vn) be an MA ordering of G = (V,E) and let
F1, F2, . . . , F|E| be the forests of V. Then
(i) V is continuous,
(ii) (V, F1) is a maximal spanning forest of G,
(iii) V is an MA ordering of G− F1.

We call a graph G = (V,E) l-simple if d(u, v) ≤ l for all u, v ∈ V (that is, the
maximum edge multiplicity in G is at most l). Let V = (v1, v2, . . . , vn) be an MA
ordering of G = (V,E) and let F1, . . . , F|E| be the forests of V in G.

Lemma 1.2. Suppose that G is l-simple and let x, y ∈ V , x 6= y, belong to the same
component of (V, Fp) for some p ≥ 1. Then µl(x, y,Gp) ≥ p.
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Proof: We shall prove, by induction on p, that for every mixed cut (EGp(A′, B′), Z ′)
which separates x and y we have l|Z ′| + dGp(A′, B′) ≥ p. Since there is a path from
x to y in (V, Fp), this inequality is obvious for p = 1. So let us suppose that p ≥ 2,
and that the inequality holds up to p− 1. Let Gj

p = Gp − {F1, . . . , Fj}. Since V is an
MA-ordering of Ḡj by Lemma 1.1(iii), the p-th forest Fp of V in G is the (p − j)-th
forest of V in Ḡj. Thus the edge-set of Gj

p is the union of the first p− j forests of V
in Ḡj. Clearly, Ḡj is also l-simple. Thus by induction

l|Z ′|+ dGj
p
(A′, B′) ≥ p− j (2)

holds for every mixed cut separating x and y, for all 1 ≤ j ≤ p− 1.
Consider a mixed cut (EGp(A,B), Z). First suppose that d(V,F1)(A,B) ≥ 1. Then,

by (2), we have l|Z|+dGp(A,B) ≥ l|Z|+dG1
p
(A,B) + 1 ≥ (p−1) + 1 = p, as required.

So we may assume that E(V,F1)(A,B) ∩ F1 = ∅.
Since x and y belong to the same component of (V, Fp), it follows from Lemma

1.1(ii),(iii) that x and y belong to the same component of (V, Fh) for all h ≤ p. Since
E(V,F1)(A,B) = ∅ and the mixed cut separates x and y, we must have |Z| ≥ 1. Thus
l|Z|+ dGp(A,B) ≥ p is obvious for p ≤ l. Hence we may also assume that p ≥ l + 1.

Let X be the vertex set of the component of (V, F1) containing x and y. By
relabelling A and B, if necessary, we may suppose that the first vertex of X in V is
not in B. By using Lemma 1.1(i) and E(V,F1)(A,B) = ∅, it follows that there is a
vertex vl ∈ Z ∩ X for which l < j for all vj ∈ B ∩ X. Let z be the first vertex of
Z ∩X in V .

Claim 1.3. dḠl
(z, B) = 0.

Proof: For a contradiction suppose that zw ∈ Fh for some w ∈ B and h ≥ l + 1.
By Lemma 1.1(ii) we have w ∈ X. Since G is l-simple and h ≥ l + 1, it follows that
zw /∈ Fi for some 1 ≤ i ≤ l. Now the choice of z and E(V,F1)(A,B) = ∅ imply that w
has no neighbour in G which preceeds z in V. So by the definition of the forests of V
each of the m ≤ l copies of edge zw should have been included in one of the first m
forests of V , a contradiction. •

Let Z ′ = Z − z and A′ = A∪ {z}. By using Claim 1.3, p ≥ l+ 1 and (2) we obtain
l|Z| + dGp(A,B) ≥ l|Z| + dGl

p
(A,B) = l + l|Z ′| + dGl

p
(A′, B) ≥ l + (p − l) = p, as

required. •

Theorem 1.4. Let G be l-simple. Then Gp is a local p-certificate for l-mixed con-
nectivity.

Proof: Let q = µl(u, v,G) and suppose, for a contradiction, that µl(u, v,Gp) <
min{p, q}. Then there exists a mixed cut (EGp(A,B), Z) separating u and v with
l|Z| + dGp(A,B) < min{p, q}. Since l|Z| + dG(A,B) ≥ µl(u, v,G) = q, there is an
edge e = xy ∈ EG(A,B) − EGp(A,B). By Lemma 1.1(ii)(iii) Fp is a maximal forest
in Ḡp−1, thus x and y belong to the same component of (V, Fp). Thus µl(x, y,Gp) ≥ p
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by Lemma 1.2, a contradiction. •

Theorem 1.4 extends earlier results of Nagamochi and Ibaraki [13] (see also [5]) on
certificates for vertex- and edge-connectivity. Gp is ‘sparse’, since |E(Gp)| ≤ p(n− 1),
and it can be found in linear time [13].

We may also deduce extensions of some previous ‘extremal’ results on vertex- and
edge-connectivity. Let v = vn, p = dG(v), and let u be the last neighbour of v in V .
Then Lemma 1.2 implies the following.

Corollary 1.5. Let G = (V,E) be an l-simple graph. Then there is a pair u, v ∈ V
with µl(u, v,G) = min{d(u), d(v)}.

This generalises a result of Mader [11]. We call G = (V,E) minimally l-mixed
p-connected if G is l-mixed p-connected but G − e is not l-mixed p-connected for
any e ∈ E(G). It is easy to show that minimally l-mixed p-connected graphs are
l-simple, using that |V | ≥ p

l
+ 1 (see [10, Lemma 2]). For a local p-certificate H of

a minimally l-mixed p-connected graph G we must have G = H. Thus Theorem 1.4
implies that a minimally l-mixed p-connected graph G = (V,E) has |E| ≤ p(n − 1).
Similarly, by taking v = vn for any MA ordering of G, Lemma 1.2 implies that every
minimally l-mixed p-connected graph G has a vertex v (in fact, at least two vertices)
with dG(v) = p. This was proved earlier for (k, l)-connected graphs by Kaneko and
Ota [10].

Theorem 1.4 and Corollary 1.5 do not hold without assuming that the graph is
l-simple. To see this let G = C2k+1

n , the graph obtained from a cycle of length
n by replacing every edge by 2k + 1 parallel edges. This graph is 2k-mixed 4k-
connected, but G4k is not. Furthermore, the minimum degree of G equals 4k+ 2, but
µ2k(u, v,G) ≤ 4k + 1 for all pairs u, v.

Sparse local p-certificates for vertex- or edge-connectivity can also be obtained by
taking the union of p ‘scan first search’ (SFS) forests, see [2, 4] for details. Since
the forests of an MA ordering are SFS forests, this leads to a more general result
with a somewhat simpler proof in these special cases. However, scan first search
forests cannot be applied in the more general setting of l-mixed connectivity, even
if the graph is l-simple. Consider G = (V,E) with V = {a, b, c, d, e} and E =
{ab, ab, ac, ac, bc, bc, cd, cd,ce, ce, ed, ed, be}. In this graph F1 = {ab, ac, cd, ce}, F2 =
{ac, bc, cd, de}, F3 = {ab, bc, ce, de}, F4 = {be} satisfy that Fi is an SFS forest in
G− ∪i−1

j=1Fj for 1 ≤ i ≤ 4. However, although b and e belong to the same component
of F4, we have µ2(b, e,G) < 4. Thus the natural extension of Lemma 1.2 fails.

2 Removable cycles

A cycle C is a p-removable cycle (with respect to l-mixed connectivity) in G = (V,E)
if G − E(C) is a local p-certificate. In particular, if G is l-mixed p-connected then
G−E(C) is also l-mixed p-connected for a p-removable cycle C. We can use Theorem
1.4 to show that l-simple graphs with high minimum degree contain p-removable
cycles.
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Theorem 2.1. Let G = (V,E) be l-simple and suppose that dG(v) ≥ p + 2 for all
v ∈ V − y for some designated vertex y ∈ V . Then there is a p-removable cycle in G.
Furthermore, a p-removable cycle can be found in linear time.

Proof: Let V = {v1, v2, . . . , vn} be an MA ordering of G with v1 = y and let Gp

be the union of the first p forests of V in G, as defined earlier. By Theorem 1.4 Gp

is a local p-certificate of G with respect to l-mixed connectivity. Since vn 6= y, we
have dG(vn) ≥ p + 2 and hence it follows from the definition of the forests of V that
vnvi ∈ Fp+1 and vnvj ∈ Fp+2 for some i ≤ j. By Lemma 1.1(i) there is a path P from
vn to vj in (V, Fp+1). Thus C = P + vnvj is a cycle in (V, Fp+1 ∪ Fp+2). Since the
forests of V are edge-disjoint, E(C) ∩ E(Gp) = ∅. Hence C is a p-removable cycle in
G. The running time follows from the fact that an MA ordering can be computed in
linear time. •

By taking l = 1 and p = k we obtain an old result of Mader [12]: every simple
k-vertex-connected graph with minimum degree at least k+ 2 has a cycle C for which
G−E(C) is k-vertex-connected. See also [9]. Note that no polynomial algorithm was
known to identify a removable cycle, even for the special case of k-vertex-connectivity.

3 Concluding remarks

Our motivation to investigate mixed connectivity and removable cycles came from the
problem of finding k-vertex-connected orientations of graphs. A conjecture of Frank
[7] states that a graph has a k-vertex-connected orientation if and only if it is 2-mixed
2k-connected. This conjecture is still open, even for k = 2, but we have been able
to verify it for Eulerian graphs in the special case k = 2. In the proof we needed
Theorem 2.1 for l = 2 and p = 4. See [1] for more details.
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