Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2003-06. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

The d-Dimensional Rigidity Matroid of Sparse Graphs

Bill Jackson and Tibor Jordán

September 12, 2003

The d-Dimensional Rigidity Matroid of Sparse Graphs

Bill Jackson* and Tibor Jordán*ᄎ

Abstract

Let $\mathcal{R}_{d}(G)$ be the d-dimensional rigidity matroid for a graph $G=(V, E)$. For $X \subseteq V$ let $i(X)$ be the number of edges in the subgraph of G induced by X. We derive a min-max formula which determines the rank function in $\mathcal{R}_{d}(G)$ when G has maximum degree at most $d+2$ and minimum degree at most $d+1$. We also show that if d is even and $i(X) \leq \frac{1}{2}[(d+2)|X|-(2 d+2)]$ for all $X \subseteq V$ with $|X| \geq 2$ then E is independent in $\mathcal{R}_{d}(G)$. We conjecture that the latter result holds for all $d \geq 2$ and prove this for the special case when $d=3$. We use the independence result for even d to show that if the connectivity of G is sufficiently large in comparison to d then E has large rank in $\mathcal{R}_{d}(G)$. We use the case $d=4$ to show that, if G is 10 -connected, then G can be made rigid in \mathbb{R}^{3} by pinning down approximately three quarters of its vertices.

1 Introduction

We shall only consider graphs without loops or multiple edges. A framework (G, p) in d-space is a graph $G=(V, E)$ and an embedding $p: V \rightarrow \mathbb{R}^{d}$. The rigidity matrix of the framework is the matrix $R(G, p)$ of size $|E| \times d|V|$, where, for each edge $v_{i} v_{j} \in E$, in the row corresponding to $v_{i} v_{j}$, the entries in the d columns corresponding to vertex $i(j)$ contain the d coordinates of $\left(p\left(v_{i}\right)-p\left(v_{j}\right)\right)\left(\left(p\left(v_{j}\right)-p\left(v_{i}\right)\right)\right.$, respectively), and the remaining entries are zeros. See [$[7]$ for more details. The rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set E by independence of rows of the rigidity matrix. A framework (G, p) is generic if the coordinates of the points $p(v)$, $v \in V$, are algebraically independent over the rationals. Any two generic frameworks (G, p) and $\left(G, p^{\prime}\right)$ have the same rigidity matroid. We call this the d-dimensional rigidity matroid $\mathcal{R}_{d}(G)=\left(E, r_{d}\right)$ of the graph G. We denote the rank of $\mathcal{R}_{d}(G)$ by $r_{d}(G)$.

[^0]Lemma 1.1. [7, Lema 11.1.3] Let (G, p) be a framework in \mathbb{R}^{d}. Then $\operatorname{rank} R(G, p) \leq$ $S(n, d)$, where $n=|V(G)|$ and

$$
S(n, d)= \begin{cases}n d-\binom{d+1}{2} & \text { if } n \geq d+1 \\ \binom{n}{2} & \text { if } n \leq d+1 .\end{cases}
$$

We say that a graph $G=(V, E)$ is rigid in \mathbb{R}^{d} if $r_{d}(G)=S(n, d)$. (This definition is motivated by the fact that if G is rigid and (G, p) is a generic framework on G, then every smooth deformation of (G, p) which preserves the edge lengths $\|p(u)-p(v)\|$ for all $u v \in E$, must preserve the distances $\|p(w)-p(x)\|$ for all $w, x \in V$, see [[7].) We say that G is M-independent, M-dependent or an M-circuit in \mathbb{R}^{d} if E is independent, dependent or a circuit, repectively, in $\mathcal{R}_{d}(G)$. For $X \subseteq V$, let $E_{G}(X)$ denote the set, and $i_{G}(X)$ the number, of edges in $G[X]$, that is, in the subgraph induced by X in G. We use $E(X)$ or $i(X)$ when the graph G is clear from the context. A cover of G is a collection \mathcal{X} of subsets of V, each of size at least two, such that $\cup_{X \in \mathcal{X}} E(X)=E$.

Lemma 1.1 implies the following necessary condition for G to be M-independent.
Lemma 1.2. If $G=(V, E)$ is M-independent in \mathbb{R}^{d} then $i(X) \leq S(|X|, d)$ for all $X \subseteq V$.

It also gives the following upper bound on the rank function.
Lemma 1.3. If $G=(V, E)$ is a graph then

$$
r_{d}(G) \leq \min _{\mathcal{X}} \sum_{X \in \mathcal{X}} S(|X|, d)
$$

where the minimum is taken over all covers \mathcal{X} of G.
The converse of Lemma 1.2 also holds for $d=1,2$. The case $d=1$ follows from the fact that the 1-dimensional rigidity matroid of G is the same as the cycle matroid of G, see [[l, Theorem 2.1.1]. The case $d=2$ is a result of Laman [[8]. Similarly, the inequality given in Lemma 1.3 holds with equality when $d=1,2$. The case $d=2$ is a result of Lovász and Yemini [4]. Neither of these statements hold for $d \geq 3$. Indeed, it remains an open problem to find good characterizations for independence or, more generally, the rank function in the d-dimensional rigidity matroid of a graph when $d \geq 3$.

We show in Section 3 that the converse of Lemma 1.2 holds and that equality holds in Lemma 1.3 for all d in the special case when G is connected and has maximum degree at most $d+2$ and minimum degree at most $d+1$. In addition we show in Section $4^{\text {t }}$ that if we strengthen the necessary condition for M-indendence given in Lemma 1.2 to $i(X) \leq\left(\frac{d}{2}+1\right)|X|-(d+1)$ then it becomes sufficient to imply that G is M-independent in \mathbb{R}^{d} for all even $d \geq 2$. We conjecture that the latter result holds for all $d \geq 2$ and prove this for the special case when $d=3$ in Section 5. In Section 6 we use the result from Section 7 to show that a highly connected graph G has large rank in $\mathcal{R}_{d}(G)$. We use the case $d=4$ in Section 7 to show that, if G is 10 -connected, then G can be fixed in \mathbb{R}^{3} by pinning down roughly three quarters of its vertices.

2 Preliminary lemmas

We need the following results. The first three lemmas appear in [7].
Lemma 2.1. [7, Lemma 11.1.9] Suppose $G=G_{1} \cup G_{2}$.
(a) If $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq d$ and G_{1}, G_{2} are rigid in \mathbb{R}^{d} then G is rigid in \mathbb{R}^{d}.
(b) If $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq 1$ and G_{1}, G_{2} are M-independent in \mathbb{R}^{d} then G is M independent in \mathbb{R}^{d}.

Lemma 2.2. [7, Lemma 11.1.1] Let $G=(V, E)$ be a graph and $v \in V$ with $d(v) \leq d$. Then G is M-independent in \mathbb{R}^{d} if and only if $G-v$ is M-independent in \mathbb{R}^{d}.

Lemmas 2.2 and 1.2 immediately imply the following elementary result.
Lemma 2.3. Let G be a graph on at most $d+2$ vertices. If $G \neq K_{d+2}$ then G is M-independent in \mathbb{R}^{d}. If $G=K_{d+2}$ then G is an M-circuit in \mathbb{R}^{d}.

Let v be a vertex in a graph G. Suppose $w, x \in N(v)$ and $w x \notin E(G)$. We denote the graph $(G-v)+w x$ by $G_{v}^{w x}$ and say that $G_{v}^{w x}$ has been obtained by a splitting of G at v along $w x$.

Lemma 2.4. [7, Theorem 11.1.7] Let v be a vertex of degree $d+1$ in a graph G. Suppose $w, x \in N(v)$ and $w x \notin E(G)$. If $G_{v}^{w x}$ is M-independent in \mathbb{R}^{d} then G is M-independent in \mathbb{R}^{d}. Furthermore, if G is M-independent in \mathbb{R}^{d}, then $G_{v}^{y z}$ is M independent in \mathbb{R}^{d} for some pair $y, z \in N(v)$.

The next lemma is folklore. We give a proof for the sake of completeness.
Lemma 2.5. Let $G=(V, E)$ be a graph.
(a) If G is rigid in \mathbb{R}^{d} then G is either d-connected or complete.
(b) If G is an M-circuit in \mathbb{R}^{d} then G is 2 -connected and ($d+1$)-edge-connected.

Proof: (a) Suppose G is not complete and not d-connected. Let $|V|=n$. If $n \leq d+1$ then, since G is not complete, $r_{d}(G) \leq|E|<\binom{n}{2}=S(n, d)$. Hence G is not rigid. Thus we may suppose that $n \geq d+2$. Since G is not d-connected, we can find subgraphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ such that $G=G_{1} \cup G_{2},\left|V_{1} \cap V_{2}\right|=d-1$ and $\left|V_{1}\right|,\left|V_{2}\right| \geq d$. Since adding edges to G cannot decrease $r_{d}(G)$, we may suppose that $G_{1} \cap G_{2}=K_{d-1}$. By Lemma 2.3, $G_{1} \cap G_{2}$ is M-independent. Let B be a basis for $\mathcal{R}_{d}(G)$ containing $E\left(G_{1} \cap G_{2}\right)$, and $B_{i}=B \cap E_{i}$ for $i \in\{1,2\}$. Let $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$. Using Lemma 1.1, we have

$$
\begin{aligned}
r_{d}(G)=|B|=\left|B_{1}\right|+\left|B_{2}\right|-\binom{d-1}{2} & \leq S\left(n_{1}, d\right)+S\left(n_{2}, d\right)-\binom{d-1}{2} \\
& =S(n, d)-1
\end{aligned}
$$

Thus G is not rigid.
(b) The first part of (b) follows from Lemma 2.1(b). To verify the second part of (b), we proceed as follows. Let S be an edge cut in G and (G, p) be a generic framework
in \mathbb{R}^{d}. Since G is an M-circuit, there exists a nowhere zero self stress for G, see [$\left.\square\right]$, page 235]. Thus there exists $\alpha: E \rightarrow \mathbb{R}-\{0\}$ such that for all $v \in V$ we have

$$
\sum_{u \in N(v)} \alpha(u v)(p(v)-p(u))=\mathbf{0}
$$

This implies (by conservation of flow) that

$$
\begin{equation*}
\sum_{u v \in S} \alpha(u v)(p(v)-p(u))=\mathbf{0} . \tag{1}
\end{equation*}
$$

Since (G, p) is generic, we may use (1) to deduce that $|S| \geq d+1$.
Let $G=(V, E)$ be a graph. For $X, Y, Z \subseteq V$, let $d(X, Y)=\mid E(X \cup Y)-(E(X) \cup$ $E(Y)) \mid$ and $d(X, Y, Z)=|E(X \cup Y \cup Z)-(E(X) \cup E(Y) \cup E(Z))|$. We shall need the following equalities, which are easy to check by counting the contribution of an edge to each of the two sides.

Lemma 2.6. Let G be a graph and $X, Y \subseteq V(G)$. Then

$$
i(X)+i(Y)+d(X, Y)=i(X \cup Y)+i(X \cap Y)
$$

Lemma 2.7. Let G be a graph and $X, Y, Z \subseteq V(G)$. Then

$$
\begin{gathered}
i(X)+i(Y)+i(Z)+d(X, Y, Z)= \\
=i(X \cup Y \cup Z)+i(X \cap Y)+i(X \cap Z)+i(Y \cap Z)-i(X \cap Y \cap Z) .
\end{gathered}
$$

3 Graphs of maximum degree at most $d+2$

Let $G=(V, E)$ be a graph and $d \geq 3$ be a fixed integer. We denote the maximum and minimum degrees of G by $\Delta(G)$ and $\delta(G)$, respectively. We say that G is Laman if $i(X) \leq S(|X|, d)$ for all $X \subseteq V$. Thus G is Laman if $i(X) \leq d|X|-\binom{d+1}{2}$ for all $X \subseteq V$ with $|X| \geq d+2$. A set $X \subseteq V$ is critical if $|X| \geq 2$ and $i(X)=S(|X|, d)$. Thus X is critical if either $2 \leq|X| \leq d+1$ and $G[X]$ is complete, or $|X| \geq d+2$ and $i(X)=d|X|-\binom{d+1}{2}$. Note that it follows from this definition that critical sets X with $|X|=d, d+1$ also satisfy $i(X)=d|X|-\binom{d+1}{2}$. Let $v \in V$ with $d(v)=d+1$. A splitting of v along two neighbours u, w in a Laman graph G is admissible if the resulting graph $G_{v}^{u w}$ is also Laman. Otherwise, it is non-admissible. The following characterisation of (non-)admissible splits is straightforward.

Lemma 3.1. A splitting of v along u, w is not admissible in G if and only if there exists a critical set X with $u, w \in X \subset V-v$.

We shall also need the following elementary properties of critical sets in Laman graphs.

Lemma 3.2. Let G be a Laman graph and $v \in X \subset V$ with $|X| \geq d$ and $i(X)=$ $d|X|-\binom{d+1}{2}$.
(a) $G[X]$ is connected.
(b) If $G[X]$ is not complete then $d_{X}(v) \geq d$ for all $v \in X$.

Proof: (a) Suppose $H=G[X]$ is not connected. Then there exists non-empty subgraphs H_{1}, H_{2} of H such that $H=H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}=\emptyset$. The fact that $|E(H)|=i(X)=d|X|-\binom{d+1}{2}$ now implies that either H_{1} or H_{2} is not Laman and contradicts the fact that G is Laman.
(b) Since $G[X]$ is not complete we have $|X| \geq d+2$. Suppose $d_{X}(v) \leq d-1$ for some $v \in X$. Then $i(X-v) \geq d|X-v|-\binom{d+1}{2}+1$. This contradicts the fact that G is Laman.

Lemma 3.3. Let $G=(V, E)$ be a Laman graph, v be a vertex of degree $d+1$ in G, and $V^{\prime}=\left\{x \in N(v): d_{G}(v) \geq d+3\right\}$. Suppose that $G\left[V^{\prime}\right]$ is a (possibly empty) complete graph. Then G has an admissible split at v.

Proof: Arguing by contradiction we suppose that G is a counterexample to the lemma. Let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\}$ and suppose that no split at v is admissible. By Lemma 3.1, we can find a family \mathcal{F} of maximal critical subsets of V such that for each $1 \leq i<j \leq d+1$, there exists $X \in \mathcal{F}$ with $v_{i}, v_{j} \in X \subset V-v$. We may suppose that \mathcal{F} has been chosen such that $|\mathcal{F}|$ is minimal. If $|\mathcal{F}|=1$ then we have $\mathcal{F}=\{X\}$, $N(v) \subseteq X$, and $i(X+v)=i(X)+d+1=d|X+v|-\binom{d+1}{2}+1$. This contradicts the fact that G is Laman. Hence $|\mathcal{F}| \geq 2$. If $G[N(v)]$ were complete then $N(v)$ would be critical and we could take $\mathcal{F}=\{N(v)\}$, contradicting the minimality of $|\mathcal{F}|$. Thus $G[N(v)]$ is not complete. Relabelling if necessary, and using the fact that $G\left[V^{\prime}\right]$ is complete, we may assume that $v_{1} v_{2} \notin E$ and $d_{G}\left(v_{1}\right) \leq d+2$. Choose $X_{1} \in \mathcal{F}$ with $v_{1}, v_{2} \in X_{1}$. Since $G\left[X_{1}\right]$ is not complete, $d_{X_{1}}\left(v_{1}\right) \geq d$ by Lemma 3.2(b).

Claim 3.4. If $X_{i}, X_{j} \in \mathcal{F}, x \in N(v) \cap X_{i} \cap X_{j}$ and $G\left[X_{i}\right], G\left[X_{j}\right]$ are not complete, then $d_{G}(x) \geq d+3$.

Proof: We have $d_{X_{t}}(x) \geq d$ for $t \in\{i, j\}$ by Lemma 3.2(b). Also $\left|X_{i} \cap X_{j}\right| \leq d-1$ by Lemma [2.6 and the maximality of X_{i}. Since $v x \in E$ we have

$$
d_{G}(x) \geq d_{X_{i}}(x)+d_{X_{j}}(x)-\left(\left|X_{1} \cap X_{2}\right|-1\right)+1 \geq d+3
$$

Since $|\mathcal{F}| \geq 2, N(v) \nsubseteq X_{1}$, so there exists a vertex $v_{j} \in N(v)-X_{1}$. Choose $v_{i} \in X_{1}$ with $d_{G}\left(v_{i}\right) \leq d+2$, for example $v_{i}=v_{1}$. There exists $X_{i, j} \in \mathcal{F}$ with $v_{i}, v_{j} \in X_{i, j}$. Since $G\left[X_{1}\right]$ is not complete, $v_{i} \in X_{1} \cap X_{i, j}$, and $d_{G}\left(v_{i}\right) \leq d+2$, we may use Claim 3.4 to deduce that $G\left[X_{i, j}\right]$ is complete. Thus $v_{i} v_{j} \in E$ for all $v_{j} \in N(v)-X_{1}$. In particular,

$$
d+2 \geq d_{G}\left(v_{i}\right) \geq d_{X_{1}}\left(v_{i}\right)+\left|N(v)-X_{1}\right|+1 \geq d+\left|N(v)-X_{1}\right|+1
$$

and hence $\left|N(v)-X_{1}\right|=1$. Relabelling we may assume that $N(v)-X_{1}=\left\{v_{d+1}\right\}$ and $N(v) \cap X_{1}=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$. If $v_{d+1} v_{j} \in E$ for all $1 \leq j \leq d$ then $X_{1}+v_{d+1}$ would be a critical set in G contradicting the maximality of X_{1}. Hence we may assume that $v_{d} v_{d+1} \notin E$. Since $v_{i} v_{d+1} \in E$ whenever $d_{G}\left(v_{i}\right) \leq d+2$, we have $d_{G}\left(v_{d}\right) \geq d+3$. Since $G\left[V^{\prime}\right]$ is complete, this implies that $d_{G}\left(v_{d+1}\right) \leq d+2$. Choose $X_{2} \in \mathcal{F}$ with $v_{d}, v_{d+1} \in X_{2}$. Then $G\left[X_{2}\right]$ is not complete so $d_{X_{2}}\left(v_{d+1}\right) \geq d$. Since $d_{G}\left(v_{d+1}\right) \leq d+2$ and $G\left[X_{2}\right]$ is not complete, Claim 3.4 implies that $v_{d+1} v_{i} \in E$ for all $v_{i} \in X_{1}-X_{2}$. The facts that $d_{X_{2}}\left(v_{d+1}\right) \geq d$ and $d_{G}\left(v_{d+1}\right) \leq d+2$ now give $\left|X_{1}-X_{2}\right|=1$. Hence $\left|X_{1} \cap X_{2}\right|=d-1$. Since $d\left(X_{1}, X_{2}\right)=1$, Lemma 2.6 now implies that $X_{1} \cup X_{2}$ is critical in G. This contradicts the maximality of X_{1}.

The following example shows that Lemma 3.3 becomes false if we allow $G\left[V^{\prime}\right]$ to contain two non-adjacent vertices of degree greater than $d+2$. Let $G=G^{\prime}-x y$ where $G^{\prime}=G_{1} \cup G_{2}, V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x, y\}$, and G_{i} is a complete graph on $d+2$ vertices for each $i \in\{1,2\}$. Then G is Laman and has no admissible split at any vertex of degree $d+1$.

Theorem 3.5. Let G be a connected graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. Then G is M-independent if and only if G is Laman.

Proof: Necessity follows from Lemma 1.2. To prove sufficiency, we proceed by induction on $|V|$. Since all graphs on at most $d+1$ vertices are M-independent by Lemma 2.5(b), we may assume $|V| \geq d+2$. Let v be a vertex of minimum degree in G.

Suppose $G-v$ is disconnected. Since G is connected and $\Delta(G) \leq d+2$, each component $H_{i}=\left(V_{i}, E_{i}\right)$ of $G-v$ satisfies the hypotheses of the theorem, and hence is M-independent by induction. Since $d_{H_{i}+v}(v) \leq d, G\left[V_{i}+v\right]$ is M-independent by Lemma 2.2. Hence G is M-independent by Lemma 2.1(b).

Thus we may assume $G-v$ is connected. If $d(v) \leq d$ then $G-v$ satisfies the hypotheses of the theorem. Hence $G-v$ is M-independent by induction and G is M-independent by Lemma 2.2. Thus we may also assume that $d(v)=d+1$. By Lemma 3.3, there is an admissible split G_{v} of G at v. Since $G-v$ is connected, G_{v} is connected. Since $\Delta(G) \leq d+2$, we have $\Delta\left(G_{v}\right) \leq d+2$ and $\delta\left(G_{v}\right) \leq d+1$. By induction G_{v} is M-independent. Thus G is M-independent by Lemma [2.4.

Using Theorem 3.5 and Lemma 2.5(b) we may deduce:
Corollary 3.6. Let $G=(V, E)$ be a graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. Then G is an M-circuit if and only if G is 2-connected, $|E|=d|V|-\binom{d+1}{2}+1$, and $i(X) \leq d|X|-\binom{d+1}{2}$ for all $X \subseteq V$ with $d+2 \leq|X| \leq|V|-1$.

Corollary 3.7. Let $G=(V, E)$ be a graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. If G is an M-circuit then $G-e$ is rigid for all $e \in E$.

Corollary 3.8. Let G be a connected M-independent graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. Let X_{1}, X_{2} be maximal critical subsets of V and suppose that $\left|X_{i}\right| \geq d+2$ for each $i \in\{1,2\}$. Then $X_{1} \cap X_{2}=\emptyset$.

Proof: Suppose $X_{1} \cap X_{2} \neq \emptyset$ and choose $x \in X_{1} \cap X_{2}$. Since G is M-independent and X_{i} is critical, Theorem 3.5 implies that $H_{i}=G\left[X_{i}\right]$ is rigid for each $i \in\{1,2\}$. By Lemma 2.1(a), $d_{X_{i}}(x) \geq d$. Thus $d+2 \geq d_{G}(x)=d_{X_{1}}(x)+d_{X_{2}}(x)-d_{X_{1} \cap X_{2}}(x) \geq$ $d+d-d_{X_{1} \cap X_{2}}(x)$ and $d_{X_{1} \cap X_{2}}(x) \geq d-2$. Hence $\left|X_{1} \cap X_{2}\right| \geq d-1$.

We first consider the case when $\left|X_{1} \cap X_{2}\right|=d-1$. Then $G\left[X_{1} \cap X_{2}\right]$ is complete and $d_{X_{i}}(x)=d$ for each $i \in\{1,2\}$ and all $x \in X_{1} \cap X_{2}$. Since $d \geq 3$ we may choose $y \in X_{1} \cap X_{2}-\{x\}$. Since $G\left[X_{1}\right]$ is rigid $G\left[X_{1}\right]-x$ is rigid by Lemma 2.2. This contradicts Lemma 2.1(a) since $\left|X_{1}-x\right| \geq d+1$ and $d_{X_{1}-x}(y)=d-1$.

Hence $\left|X_{1} \cap X_{2}\right| \geq d$. Lemma 2.6 and Theorem 3.5 now imply that $X_{1} \cup X_{2}$ is critical, contradicting the maximality of X_{1}, X_{2}.

We next use Theorem 3.5 to determine the rank function for graphs of low degree. Let $G=(V, E)$ be a graph and \mathcal{X} be a cover of G. For $X \subseteq V$ let $f(X)=S(|X|, d)$ and $\operatorname{val}(\mathcal{X})=\sum_{X \in \mathcal{X}} f(X)$. We say that \mathcal{X} is 1-thin if $\left|X_{i} \cap X_{j}\right| \leq 1$ for all distinct $X_{i}, X_{j} \in \mathcal{X}$.

Theorem 3.9. Let $G=(V, E)$ be a connected graph with $\Delta(G) \leq d+2$ and $\delta(G) \leq$ $d+1$. Then $r(E)=\min _{\mathcal{X}} \operatorname{val}(\mathcal{X})$ where the minimum is taken over all 1 -thin covers \mathcal{X} of G.

Proof: We have $r(E) \leq \operatorname{val}(\mathcal{X})$ for all covers \mathcal{X} of G by Lemma 1.3 so it only remains to show that there exists a 1-thin cover \mathcal{X} of G with $r(E)=\operatorname{val}(\mathcal{X})$. Let B be a basis for $\mathcal{R}(G), H=(V, B)$,

$$
\begin{aligned}
\mathcal{X}_{0}= & \{X \subseteq V: X \text { is a maximal critical set in } H \text { and }|X| \geq d+2\}, \\
& \mathcal{X}_{1}=\left\{\{u, v\}: u v \in B \text { and } u v \notin E_{G}(X) \text { for all } X \in \mathcal{X}_{0}\right\}
\end{aligned}
$$

and $\mathcal{X}=\mathcal{X}_{0} \cup \mathcal{X}_{1}$. Then \mathcal{X} is 1 -thin by Corollary 3.8.
Since each edge of H belongs to a critical subgraph of H, \mathcal{X} covers H. To see that \mathcal{X} covers G, let $e \in E-B$. Then $e \in E(C) \subseteq B+e$ for a unique M-circuit C. Since C is a subgraph of $G, C-e$ is rigid by Corollary 3.7 and $|V(C)| \geq d+2$ by Lemma 2.5(b). Thus $V(C) \subseteq X$ for some $X \in \mathcal{X}_{0}$ and $e \in E_{G}(X)$.

We complete the proof by showing that $\operatorname{val}(\mathcal{X})=r(E)$. Let $B_{i}=B \cap E_{H}\left(X_{i}\right)$ for each $X_{i} \in \mathcal{X}$. Since X_{i} is critical in H we have $\left|B_{i}\right|=f\left(X_{i}\right)$. Since \mathcal{X} is 1-thin the sets B_{i} are pairwise disjoint and hence

$$
r(E)=|B|=\sum_{X_{i} \in \mathcal{X}}\left|B_{i}\right|=\operatorname{val}(\mathcal{X})
$$

The graph $G=K_{d+2, d+2}$ shows that Theorems 3.5 and 3.9 become false when $d \geq 4$ if we remove the hypothesis that $\delta(G) \leq d+1$. It is Laman and is an M-circuit, see [$[7$, Example 11.2.4]. Thus it is not M-independent. Furthermore $\operatorname{val}(\mathcal{X}) \geq|E|$ for each 1-thin cover \mathcal{X} of $G($ and $r(E)=|E|-1)$.

Similarly, Theorems Theorems 3.5 and 3.9 become false when $d \geq 4$ if we remove the hypothesis that G is connected since we take G to be the disjoint union of $G=K_{d+2, d+2}$
and an arbitrary M-independent graph of low degree. It is conceivable however that these results remain valid without the hypotheses that $\delta(G) \leq d+1$ and G is connected in the special case when $d=3$.

Conjecture 3.10. Let G be a graph with $\Delta(G) \leq 5$. Then G is M-independent in \mathbb{R}^{3} if and only if G is Laman.

Conjecture 3.11. Let G be a graph with $\Delta(G) \leq 5$. Then $r_{3}(E)=\min _{\mathcal{X}} \operatorname{val}(\mathcal{X})$ where the minimum is taken over all 1 -thin covers \mathcal{X} of G.

Note that by Theorems 3.5 and 3.9, it would suffice to prove the above conjectures for 5 -regular graphs.

Remark Let $G=(V, E)$ be a graph and $d \geq 1$ be an integer. For $E^{\prime} \subseteq E$, we say that E^{\prime} is L-independent if either $E^{\prime}=\emptyset$, or $E^{\prime} \neq \emptyset$ and the subgraph of G induced by E^{\prime} is Laman. This definition of independence gives the rigidity matroid of G when $d \leq 2$. We can show that the definition also gives a matroid, $\mathcal{L}_{d}(G)$, when $d \geq 3$ and $\Delta(G) \leq d+2$. The rank function of $\mathcal{L}_{d}(G)$ is $\tilde{r}_{d}\left(E^{\prime}\right)=\min _{\mathcal{X}} \operatorname{val}(\mathcal{X})$, where the minimum is taken over all 1 -thin covers \mathcal{X} of the subgraph of G induced by E^{\prime}. Theorem 3.9 shows that $\mathcal{L}_{d}(G)=\mathcal{R}_{d}(G)$ when G is connected, $\Delta(G) \leq d+2$ and $\delta(G) \leq d+1$. Conjectures 3.10 and 3.11 assert that $\mathcal{L}_{3}(G)=\mathcal{R}_{3}(G)$ when $\Delta(G) \leq 5$. This equality does not hold in general since $\mathcal{L}_{d}\left(K_{d+2, d+2}\right) \neq \mathcal{R}_{d}\left(K_{d+2, d+2}\right)$ when $d \geq 4$.

4 Sparse graphs

Let $G=(V, E)$ be a graph and k be a positive integer. We say that a subset S of E is independent if $\left|S^{\prime}\right| \leq k\left|V\left(S^{\prime}\right)\right|-(2 k-1)$ for all $\emptyset \neq S^{\prime} \subseteq S$, or equivalently, if

$$
i_{G\left[S^{\prime}\right]}(X) \leq k|X|-(2 k-1)
$$

for all $S^{\prime} \subseteq S$ and all $X \subseteq V\left(S^{\prime}\right)$ with $|X| \geq 2$. It follows from the theory of submodular functions (see [7, Appendix]) that this definition of independence gives rise to a matroid $\mathcal{N}_{k}(G)$ with ground set E, for every k. It also follows that the rank of E in $\mathcal{N}_{k}(G)$ can be expressed as follows (see [4] for the special case $k=2$). Let \bar{r}_{k} denote the rank function of \mathcal{N}_{k}. Then

$$
\begin{equation*}
\bar{r}_{k}(E)=\min _{\mathcal{X}}\left\{\sum_{X \in \mathcal{X}}(k|X|-(2 k-1))\right\} \tag{2}
\end{equation*}
$$

where the minimum is taken over all collections $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$ of subsets of V for which $\left\{E\left(X_{1}\right), E\left(X_{2}\right), \ldots, E\left(X_{t}\right)\right\}$ partitions E. (In fact, it suffices to minimize over 1-thin covers of G.)

Suppose that E is independent in $\mathcal{N}_{k}(G)$. Let v be a vertex of G and G_{v} be obtained by a splitting of G at v. We say that this splitting is feasible if $E\left(G_{v}\right)$ is independent in $\mathcal{N}_{k}\left(G_{v}\right)$.

Lemma 4.1. Let $G=(V, E)$ be a graph and v be a vertex of G of degree $2 k-1$. Suppose that E is independent in $\mathcal{N}_{k}(G)$. Then some splitting of G at v is feasible.

Proof: Suppose that G has no feasible splitting at v. Let $S=\left\{w x: w, x \in N_{G}(v)\right\}$, $H=(V, E \cup S), \mathcal{N}=\mathcal{N}_{k}(H)$ and r be the rank function in \mathcal{N}. Let $G-v=G^{\prime}=$ $\left(V-v, E^{\prime}\right)$. Since E is independent in \mathcal{N} and $E^{\prime} \subseteq E, E^{\prime}$ is independent in \mathcal{N}. If $r\left(E^{\prime}+w x\right)=r\left(E^{\prime}\right)+1$ for some $w x \in S$ then $E^{\prime}+w x$ would be independent in \mathcal{N} and $G_{v}^{w x}$ would be a feasible splitting of G at v. Thus $r\left(E^{\prime}+w x\right)=r\left(E^{\prime}\right)$ for all $w x \in S$ and hence $r\left(E^{\prime} \cup S\right)=r\left(E^{\prime}\right)$. Let $T=E-E^{\prime}$. Since $H[S]=K_{2 k-1}, S$ is independent in \mathcal{N}. Thus S can be extended to a basis B of \mathcal{N}. Since $H[T \cup S]=K_{2 k}, T \cup S$ is dependent in \mathcal{N}. Thus B contains at most $|T|-1=2 k-2$ edges in T. It follows that

$$
r(E \cup S)=r\left(E^{\prime} \cup S \cup T\right) \leq r\left(E^{\prime} \cup S\right)+2 k-2=r\left(E^{\prime}\right)+2 k-2=r(E)-1
$$

This contradicts the fact that r is monotone.

Theorem 4.2. Let $G=(V, E)$ be a graph and let d be an even integer. If E is independent in $\mathcal{N}_{\frac{d}{2}+1}(G)$ then E is independent in $\mathcal{R}_{d}(G)$.

Proof: Suppose the theorem is false and let G be a smallest counterexample. Let v be a vertex of minimum degree in G. Since E is independent in $\mathcal{N}_{\frac{d}{2}+1}(G)$, we have $|E| \leq\left(\frac{d}{2}+1\right)|V|-(d+1)$ and hence $d(v) \leq d+1$.

Suppose $d(v) \leq d$. Let $G-v=G^{\prime}=\left(V-v, E^{\prime}\right)$. Since E is independent in $\mathcal{N}_{\frac{d}{2}+1}(G), E^{\prime}$ is independent in $\mathcal{N}_{\frac{d}{2}+1}\left(G^{\prime}\right)$. By induction E^{\prime} is independent in $\mathcal{R}_{d}\left(G^{\prime}\right)$. Using Lemma 2.2 , we deduce that E is independent in $\mathcal{R}_{d}(G)$.

Hence we may assume that $d(v)=d+1$. By Lemma 4.1, G has a feasible split $G_{v}=\left(V-v, E^{\prime \prime}\right)$ at v. Then $E^{\prime \prime}$ is independent in $\mathcal{N}_{\frac{d}{2}+1}\left(G_{v}\right)$. By induction $E^{\prime \prime}$ is independent in $\mathcal{R}_{d}\left(G_{v}\right)$. Using Lemma 2.4, we deduce that E is independent in $\mathcal{R}_{d}(G)$. •

Using the definition of independence in $\mathcal{R}(G)$ we immediately obtain:
Corollary 4.3. Let $G=(V, E)$ be a graph and let d be an even integer. If $i(X) \leq$ $\left(\frac{d}{2}+1\right)|X|-(d+1)$ for all $X \subseteq V$ with $|X| \geq 2$ then G is M-independent in \mathbb{R}^{d}.

Note that the case $d=2$ corresponds to (the difficult part of) Laman's theorem. We believe that Corollary 4.3 is valid for odd values of d as well.

Conjecture 4.4. Let $G=(V, E)$ be a graph. If $i(X) \leq\left(\frac{d}{2}+1\right)|X|-(d+1)$ for all $X \subseteq V$ with $|X| \geq 2$ then G is M-independent in \mathbb{R}^{d}.

5 Sparse graphs in 3-space

In this section we prove (a slightly stronger form of) Conjecture 4.4 for $d=3$. Throughout this section M-independent refers to independence in $\mathcal{R}_{3}(G)$.

Theorem 5.1. Let $G=(V, E)$ be a graph. If

$$
\begin{equation*}
i(X) \leq \frac{1}{2}(5|X|-7) \tag{3}
\end{equation*}
$$

for all $X \subseteq V$ with $|X| \geq 2$ then G is M-independent.
Proof: We use induction on $|V|$. The theorem holds if $|V|=2$ since K_{2} is M independent. Hence suppose $|V| \geq 3$. Let v be a vertex of minimum degree in G. Since $|E|=i(V) \leq(5|V|-7) / 2, v$ has degree at most four. If $d(v) \leq 3$ then we may apply induction to deduce that $G-v$ is M-independent. Then G is M-independent by Lemma 2.2. Hence we may suppose that $d(v)=4$. If $w x \notin E(G)$ for some $w, x \in E(G)$ and $G_{v}^{w x}$ satisfies the hypothesis of the theorem then we are done by induction and Lemma 2.4. Thus we may suppose that for each pair w, x of neighbours of v, there exists a subset X of $V-v$ such that $i(X) \geq(5|X|-8) / 2$ and $w, x \in X$. We shall say that such a set is a critical set covering w, x.

Claim 5.2. Suppose $i(X) \geq(5|X|-9) / 2$ for some $X \subseteq V-v$. Then $N(v) \nsubseteq X$.
Proof: If $N(v) \subseteq X$ then

$$
i(X+v)=i(X)+4 \geq(5|X|-1) / 2=(5|X+v|-6) / 2 .
$$

This contradicts (3).
Let $X_{1}, X_{2}, \ldots, X_{p}$ be a family of maximal critical sets which cover each pair of neighbours of v and such that p is as small as possible. Claim 5.2 implies that $p \geq 2$.

Claim 5.3. $\left|X_{i} \cap N(v)\right|=2$ for all $1 \leq i \leq p$, and hence $p=6$.
Proof: By Claim 5.2 and the definition of the sets X_{i}, we have $2 \leq\left|X_{i} \cap N(v)\right| \leq 3$ for all $2 \leq i \leq p$. For a contradiction suppose, without loss of generality, that $\left|X_{1} \cap N(v)\right|=3$.

We first show that $\left|X_{1} \cap X_{i}\right|=1$ for all $2 \leq i \leq p$. If this is not the case then, relabelling if necessary, we have $\left|X_{1} \cap X_{2}\right| \geq 2$. Then Lemma 2.6 implies that

$$
\begin{aligned}
i\left(X_{1} \cup X_{2}\right) & \geq i\left(X_{1}\right)+i\left(X_{2}\right)-i\left(X_{1} \cap X_{2}\right) \\
& \geq\left(5\left|X_{1}\right|-8\right) / 2+\left(5\left|X_{2}\right|-8\right) / 2-\left(5\left|X_{1} \cap X_{2}\right|-7\right) / 2 \\
& =\left(5\left|X_{1} \cup X_{2}\right|-9\right) / 2
\end{aligned}
$$

This contradicts Claim 5.2 since the definition of the sets X_{1}, X_{2} and the fact that $\left|X_{1} \cap N(v)\right| \geq 3$ implies that $N(v) \subseteq X_{1} \cup X_{2}$. Hence $\left|X_{1} \cap X_{i}\right|=1$ for all $2 \leq i \leq p$. In particular, $\left|X_{i} \cap N(v)\right|=2$ for all $2 \leq i \leq p$ and hence $p=4$. We also have $X_{1} \cap X_{2} \cap X_{3}=\emptyset$.

Thus, by Lemma 2.7, we get

$$
\begin{equation*}
i\left(X_{1} \cup X_{2} \cup X_{3}\right) \geq i\left(X_{1}\right)+i\left(X_{2}\right)+i\left(X_{3}\right)-i\left(X_{2} \cap X_{3}\right) . \tag{4}
\end{equation*}
$$

Using (3) and the fact that $\left|X_{2} \cap X_{3}\right| \geq 1$, we have $i\left(X_{2} \cap X_{3}\right) \leq\left(5\left|X_{2} \cap X_{3}\right|-5\right) / 2$. Since X_{1}, X_{2}, X_{3} are critical, (4) gives $i\left(X_{1} \cup X_{2} \cup X_{3}\right) \geq\left(5\left|X_{1}\right|-8\right) / 2+\left(5\left|X_{2}\right|-\right.$ $8) / 2+\left(5\left|X_{3}\right|-8\right) / 2-\left(5\left|X_{2} \cap X_{3}\right|\right) / 2=\left(5\left|X_{1} \cup X_{2} \cup X_{3}\right|-24+5+10\right) / 2=$ $\left(5\left|X_{1} \cup X_{2} \cup X_{3}\right|-9\right) / 2$. This contradicts Claim 5.2 since $N(v) \subseteq X_{1} \cup X_{2} \cup X_{3}$.

Claim 5.4. $\left|X_{i} \cap X_{j}\right| \leq 1$ for all $1 \leq i<j \leq 6$.
Proof: By symmetry it is sufficient to consider the pair X_{1}, X_{2}. For a contradiction suppose that $\left|X_{1} \cap X_{2}\right| \geq 2$.

We first consider the case when $X_{1} \cap X_{2} \cap N(v)=\emptyset$. By Lemma 2.6 we have

$$
i\left(X_{1} \cup X_{2}\right) \geq i\left(X_{1}\right)+i\left(X_{2}\right)-i\left(X_{1} \cap X_{2}\right) .
$$

Now (3) and the facts that $\left|X_{1} \cap X_{2}\right| \geq 2$ and X_{1}, X_{2} are critical, imply that $i\left(X_{1} \cup\right.$ $\left.X_{2}\right) \geq\left(5\left|X_{1} \cup X_{2}\right|-9\right) / 2$. Since $X_{1} \cap X_{2} \cap N(v)=\emptyset$, we have $N(v) \subseteq X_{1} \cup X_{2}$. This contradicts Claim 5.2.

Thus $X_{1} \cap X_{2} \cap N(v) \neq \emptyset$. By Lemma 2.6, $i\left(X_{1} \cup X_{2}\right) \geq i\left(X_{1}\right)+i\left(X_{2}\right)-i\left(X_{1} \cap X_{2}\right)$. By (3), $i\left(X_{1} \cap X_{2}\right) \leq\left(5\left|X_{1} \cap X_{2}\right|-7\right) / 2$. The fact that X_{1} is a maximal critical set now implies that

$$
\begin{align*}
& i\left(X_{1} \cup X_{2}\right)=\left(5\left|X_{1} \cap X_{2}\right|-9\right) / 2 \tag{5}\\
& i\left(X_{1} \cap X_{2}\right)=\left(5\left|X_{1} \cap X_{2}\right|-7\right) / 2 . \tag{6}
\end{align*}
$$

Let $X_{1} \cap N(v)=\{w, x\}$ and $X_{2} \cap N(v)=\{x, y\}$. Relabelling if necessary we may suppose that $X_{3} \cap N(v)=\{w, y\}$. By Lemma 2.6, $i\left(X_{1} \cap X_{2}\right)+i\left(X_{3}\right) \leq i\left(\left(X_{1} \cap X_{2}\right) \cup\right.$ $\left.X_{3}\right)+i\left(X_{1} \cap X_{2} \cap X_{3}\right)$. Using (6), and the facts that $x \notin X_{3}$ and X_{3} is a maximal critical set, we deduce that $i\left(X_{1} \cap X_{2} \cap X_{3}\right) \geq\left(5\left|X_{1} \cap X_{2} \cap X_{3}\right|-6\right) / 2$. Hypothesis (3) now implies that $\left|X_{1} \cap X_{2} \cap X_{3}\right| \leq 1$ and hence $i\left(X_{1} \cap X_{2} \cap X_{3}\right)=0$. By Lemma 2.7 we have

$$
\begin{equation*}
i\left(X_{1} \cup X_{2} \cup X_{3}\right) \geq i\left(X_{1}\right)+i\left(X_{2}\right)+i\left(X_{3}\right)-i\left(X_{1} \cap X_{2}\right)-i\left(X_{1} \cap X_{3}\right)-i\left(X_{2} \cap X_{3}\right) . \tag{7}
\end{equation*}
$$

Suppose $\left|X_{1} \cap X_{2} \cap X_{3}\right|=1$. Then $\left|X_{i} \cap X_{j}\right| \geq 2$ for all $1 \leq i<j \leq 3$ and by (3), $i\left(X_{i} \cap X_{j}\right) \leq\left(5\left|X_{1} \cap X_{2}\right|-7\right) / 2$ for all $1 \leq i<j \leq 3$. Substitution into (7) now gives $i\left(X_{1} \cup X_{2} \cup X_{3}\right) \geq\left(5\left|X_{1} \cup X_{2} \cup X_{3}\right|-8\right) / 2$. This contradicts the fact that X_{1} is a maximal critical set.

Thus $X_{1} \cap X_{2} \cap X_{3}=\emptyset$. By (3) and the facts that $\left|X_{1} \cap X_{3}\right| \geq 1$ and $\left|X_{2} \cap X_{3}\right| \geq 1$, we have

$$
\begin{align*}
i\left(X_{1} \cap X_{3}\right) & \leq\left(5\left|X_{1} \cap X_{2}\right|-5\right) / 2, \tag{8}\\
i\left(X_{2} \cap X_{3}\right) & \leq\left(5\left|X_{1} \cap X_{2}\right|-5\right) / 2 \tag{9}
\end{align*}
$$

Substituting (6), (8) and (9) into (7) and using the criticality of X_{1}, X_{2}, X_{3}, we obtain $i\left(X_{1} \cup X_{2} \cup X_{3}\right) \geq\left(5\left|X_{1} \cup X_{2} \cup X_{3}\right|-7\right) / 2$. This again contradicts the fact that X_{1} is a maximal critical set and completes the proof of the claim.

We can now complete the proof of the Theorem. By Claims 5.3 and 5.4,

$$
i\left(\cup_{i=1}^{6} X_{i}\right) \geq \sum_{i=1}^{6} i\left(X_{i}\right),
$$

and

$$
\left|\cup_{i=1}^{6} X_{i}\right| \leq\left(\sum_{i=1}^{6}\left|X_{i}\right|\right)-8 .
$$

Since each set X_{i} is critical we have

$$
i\left(\cup_{i=1}^{6} X_{i}\right) \geq \sum_{i=1}^{6} i\left(X_{i}\right)=\sum_{i=1}^{6}\left(5\left|X_{i}\right|-8\right) / 2 \geq\left(5\left|\cup_{i=1}^{6} X_{i}\right|-8\right) / 2
$$

This contradicts the fact that X_{1} is a maximal critical set.

We conjecture that the multiplicative constant in the upper bound on $i(X)$ can be weakened in the previous theorem as follows. It is well-known that there exist M-dependent graphs $G=(V, E)$ with $i(X) \leq 3|X|-6$ for all $X \subseteq V,|X| \geq 3$. We also have M-dependent examples for $i(X) \leq 3|X|-7$, but perhaps graphs satisfying $i(X) \leq 3|X|-8$ for all $X \subseteq V,|X| \geq 5$ are M-independent.

6 Highly connected graphs

By using the proof method of Lovász and Yemini [4, Theorem 2], we shall prove that every $(4 k-2)$-connected graph G has rank $k|V(G)|-(2 k-1)$ in $\mathcal{N}_{k}(G)$. We shall use the following elementary lemma on integers.

Lemma 6.1. Suppose k is a positive integer and let $a_{1}, a_{2}, \ldots, a_{t}$ be integers such that $t \geq 2, a_{i} \geq 2$ for $1 \leq i \leq t$, and $\sum_{i=1}^{t}\left(a_{i}-1\right) \geq 4 k-2$. Then

$$
g\left(a_{1}, a_{2}, \ldots, a_{t}\right):=\sum_{i=1}^{t}\left(k-\frac{2 k-1}{a_{i}}\right) \geq k .
$$

Proof: We may suppose that $a_{1}, a_{2}, \ldots, a_{t}$ have been chosen such that $g\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ is as small as possible. Relabelling if necessary we have $a_{1} \geq a_{i}$ for all $2 \leq i \leq t$. If $t \geq 2 k$, then the fact that $a_{i} \geq 2$ for all $1 \leq i \leq t$ implies that $g\left(a_{1}, a_{2}, \ldots, a_{t}\right) \geq k$. Hence we may assume that $t \leq 2 k-1$.

Suppose that $a_{j} \geq 3$ for some $2 \leq j \leq t$. Relabelling if necessary we may assume that $j=2$. Let $a_{1}^{\prime}=a_{1}+1, a_{2}^{\prime}=a_{2}-1$, and $a_{i}^{\prime}=a_{i}$ for $3 \leq j \leq t$. Since $a_{1} \geq a_{2}$, we have

$$
(2 k-1)^{-1}\left[g\left(a_{1}, a_{2}, \ldots, a_{t}\right)-g\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{t}^{\prime}\right)\right]=\frac{1}{\left(a_{2}-1\right) a_{2}}-\frac{1}{a_{1}\left(a_{1}+1\right)}>0
$$

This contradicts the minimality of $g\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ and hence $a_{j}=2$ for all $2 \leq j \leq t$. Since $\sum_{i=1}^{t}\left(a_{i}-1\right) \geq 4 k-2$, we have $a_{1} \geq 4 k-t$.

Suppose $t \geq 3$. Let $a_{1}^{\prime \prime}=a_{1}+1$ and $a_{i}^{\prime \prime}=a_{i}$ for $2 \leq j \leq t-1$. Since $t \leq 2 k-1$ we have $a_{1} \geq 4 k-t \geq 2 k+1$. Thus

$$
g\left(a_{1}, a_{2}, \ldots, a_{t}\right)-g\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{t-1}^{\prime \prime}\right)=-\frac{2 k-1}{a_{1}\left(a_{1}+1\right)}+\frac{1}{2}>0 .
$$

This contradicts the minimality of $g\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ and hence $t=2$. We now have $a_{1} \geq 4 k-t=4 k-2, a_{2}=2$ and $g\left(a_{1}, a_{2}\right) \geq k$.

Theorem 6.2. Every $(4 k-2)$-connected graph $G=(V, E)$ has $\bar{r}_{k}(G)=k|V|-(2 k-$ 1).

Proof: For a contradiction suppose that the theorem is false and let $G=(V, E)$ be a counterexample (that is, a $(4 k-2)$-connected graph with $\left.\bar{r}_{k}(G)<k|V|-(2 k-1)\right)$ with the smallest number of vertices, and subject to this, with the largest number of edges.

By (2), there is a family of subsets $\left\{X_{1}, X_{2}, \ldots, X_{t}\right\}$ of V such that $\left\{E\left(X_{1}\right)\right.$, $\left.E\left(X_{2}\right), \ldots, E\left(X_{t}\right)\right\}$ partitions $E,\left|X_{i}\right| \geq 2$ for $1 \leq i \leq t$, and

$$
\begin{equation*}
\sum_{i=1}^{t}\left(k\left|X_{i}\right|-(2 k-1)\right)<k|V|-(2 k-1) . \tag{10}
\end{equation*}
$$

By the maximality of $|E|, G\left[X_{i}\right]$ is complete for all $1 \leq i \leq t$.
Claim 6.3. Each vertex $v \in V$ is contained in at least two sets X_{i}.
Proof: Suppose the claim is false. Then, after relabelling if necessary, there exists a vertex v for which $v \in X_{t}$ and $v \notin X_{i}, 1 \leq i \leq t-1$ hold. Then all the edges incident to v are in $G\left[X_{t}\right]$ (hence $\left|X_{t}\right| \geq 4 k-1$, since $d(v) \geq 4 k-2$) and the neighbours of v induce a complete subgraph of G. Let $G^{\prime}=G-v, X_{i}^{\prime}=X_{i}$, for $1 \leq i \leq t-1$, and $X_{t}^{\prime}=X_{t}-\{v\}$. By (10) we have

$$
\begin{aligned}
\sum_{i=1}^{t}\left(k\left|X_{i}^{\prime}\right|-(2 k-1)\right) & =\sum_{i=1}^{t}\left(k\left|X_{i}\right|-(2 k-1)\right)-k \\
& <k|V|-(2 k-1)-k=k\left|V\left(G^{\prime}\right)\right|-(2 k-1)
\end{aligned}
$$

Since G is a counterexample with as few vertices as possible, G^{\prime} cannot be ($4 k-2$)connected. This implies that either G is a complete graph on $4 k-1$ vertices or there is a vertex separator of size $4 k-2$ in G which contains v. In the former case $X_{t}=V$ must hold, which contradicts (10). In the latter case, since G is ($4 k-2$)-connected, each component of $G-T$ contains at least one neighbour of v. But this is impossible, since the neighbours of v induce a complete graph in G.

Since G is $(4 k-2)$-connected, we have $d(v) \geq 4 k-2$ for each $v \in V$, and hence

$$
\begin{equation*}
\sum_{X_{i} \ni v}\left(\left|X_{i}\right|-1 \mid\right) \geq 4 k-2 . \tag{11}
\end{equation*}
$$

Claim 6.4. For each vertex $v \in V$ we have

$$
\begin{equation*}
\sum_{X_{i} \ni v}\left(k-\frac{2 k-1}{\left|X_{i}\right|}\right) \geq k . \tag{12}
\end{equation*}
$$

Proof: Without loss of generality suppose that $v \in X_{1}, \ldots, X_{r}, v \notin X_{r+1}, \ldots, X_{t}$, and $\left|X_{1}\right| \geq\left|X_{2}\right| \geq \ldots \geq\left|X_{r}\right|$. By Claim 6.3 we have $r \geq 2$. Now the claim follows from (11) and Lemma 6.1 by letting $a_{i}=\left|X_{i}\right|$.

To finish the proof we take the sum of (12) over all vertices of G and obtain

$$
k|V| \leq \sum_{v \in V} \sum_{X_{i} \ni v}\left(k-\frac{2 k-1}{\left|X_{i}\right|}\right)=\sum_{i=1}^{t}\left|X_{i}\right|\left(k-\frac{2 k-1}{\left|X_{i}\right|}\right)=\sum_{i=1}^{t}\left(k\left|X_{i}\right|-(2 k-1)\right) .
$$

This contradicts (10) and completes the proof.
Using Theorem 6.2 and Corollary 4.3 we obtain:
Corollary 6.5. Let d be an even integer. Then every $(2 d+2)$-connected graph G has $r_{d}(G) \geq\left(\frac{d}{2}+1\right)|V|-(d+1)$.

The special case $d=2$ of the corollary (which implies that 6-connected graphs are rigid in two dimensions) was proved by Lovász and Yemini [4 , Theorem 2].

7 Pinning down graphs in 3-space

A pinning set for a d-dimensional framework (G, p), is a set $P \subseteq V$ such that the $d|V-P|$ columns of $R_{d}(G, p)$ indexed by $V-P$ are linearly independent. (This definition is motivated by the fact that if P is a pinning set for (G, P), then every smooth deformation of (G, p) which preserves all edge lengths of G and leaves the points $p(u), u \in P$, fixed must leave all points $p(v), v \in V$, fixed. Thus (G, p) becomes 'rigid' when we 'pin down' the vertices in P, see [6, Statement 8.2.1].) The pinning number, $\operatorname{pin}_{d}(G, p)$, of (G, p) is defined to be the size of a smallest pinning set for (G, p). Since the pinning number of any two generic frameworks on G is the same, we may define the pinning number of $G, \operatorname{pin}_{d}(G)$, as the pinning number of (G, p) of any generic framework (G, p). It is easy to see that $\operatorname{pin}_{d}(G) \leq \operatorname{pin}_{d}(G, p)$ for all frameworks (G, p).

Lovász [3] gives a polynomial time algorithm for computing $\operatorname{pin}_{2}(G, p)$ for any 2-dimensional framework (G, p). This gives rise to a randomised algorithm for computing $\operatorname{pin}_{2}(G)$ in polynomial time, but there is, as yet, no deterministic polynomial algorithm for determining $\operatorname{pin}_{2}(G)$. Mansfield [5] proved that the problem of computing $\operatorname{pin}_{3}(G, p)$ is NP-hard for 3 -dimensional frameworks (G, p). He also showed that computing $\operatorname{pin}_{3}(G)$ for some graph G is NP-hard.

By using Theorem 4.2 we shall prove that highly connected graphs have relatively small pinning number in 3 -space. This connection between high connectivity and
rigidity in 3 -space may be considered as a first step towards the Lovász-Yemini conjecture [$[4]$, which asserts that sufficiently highly connected (perhaps 12-connected) graphs are rigid in 3-space (and hence their pinning number is three). Note that there exists a family of 11-connected graphs whose pinning number grows linearly with $|V|$.

Theorem 7.1. Let $G=(V, E)$ be a 10 -connected graph. Then $\operatorname{pin}_{3}(G) \leq \frac{3|V|}{4}+4$.
Proof: Let (G, p) be a 4 -dimensional generic framework on G and $R_{4}(G, p)$ be the rigidity matrix of (G, p). Since the framework is generic, $\operatorname{rank} R_{4}(G, p)=r_{4}(G)$. Let C be the set of columns of $R_{4}(G, p)$ and C_{i} be the columns in C corresponding to the i 'th coordinate, for $1 \leq i \leq 4$.

By Corollary 6.5 it follows that $\operatorname{rank} R_{4}(G, p) \geq 3|V|-5$. Let I be a set of $3|V|-5$ linearly independent columns in $R_{4}(G, p)$. Relabelling if necessary we may suppose that $\left|I \cap C_{4}\right| \leq|I| / 4$. Let $\left(G, p^{\prime}\right)$ be the projection of (G, p) onto the subspace of \mathbb{R}^{4} represented by the first three coordinates. Then $R_{3}\left(G, p^{\prime}\right)$ is obtained from $R_{4}(G, p)$ by deleting the columns of C_{4}. Thus $R_{3}\left(G, p^{\prime}\right)$ contains at least $3|I| / 4=(9|V|-15) / 4$ columns of I. This implies that I covers at least $|V| / 4-4$ triples of columns of $R_{3}\left(G, p^{\prime}\right)$ corresponding to some set $Y \subset V$. Hence $V-Y$ is a pinning set for $\left(G, p^{\prime}\right)$ and $\operatorname{pin}_{3}(G) \leq \operatorname{pin}_{3}\left(G, p^{\prime}\right) \leq \frac{3|V|}{4}+4$.

References

[1] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity, AMS Graduate Studies in Mathematics Vol. 2, 1993.
[2] G. Laman, On graphs and rigidity of plane skeletal structures, J. Engineering Math. 4 (1970), 331-340.
[3] L. LovÁsz, Matroid matching and some applications, J. Combin. Theory Ser. B 28 (1980), no. 2, 208-236.
[4] L. Lovász and Y. Yemini, On generic rigidity in the plane, SIAM J. Algebraic Discrete Methods 3 (1982), no. 1, 91-98.
[5] A. Mansfield, On the computational complexity of a rigidity problem, IMA J. Appl. Math. 27 (1981), no. 4, 423-429.
[6] A. Recski, Matroid theory and its applications in electric network theory and in statics, Akadémiai Kiadó, Budapest, 1989.
[7] W. Whiteley, Some matroids from discrete applied geometry, in Matroid theory (J.E. Bonin, J.G. Oxley and B. Servatius eds., Seattle, WA, 1995), Contemp. Math., 197, Amer. Math. Soc., Providence, RI, 1996, 171-311.

[^0]: *School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, England. E-mail: B.Jackson@qmul.ac.uk Supported by the Royal Society/ Hungarian Academy of Sciences Exchange Programme.
 **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, $1117 \mathrm{Bu}-$ dapest, Hungary. E-mail: jordan@cs.elte.hu Supported by the Hungarian Scientific Research Fund grant no. T037547, F034930, and FKFP grant no. 0143/2001.

