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The d-Dimensional Rigidity Matroid of Sparse
Graphs

Bill Jackson? and Tibor Jordán??

Abstract

Let Rd(G) be the d-dimensional rigidity matroid for a graph G = (V, E).
For X ⊆ V let i(X) be the number of edges in the subgraph of G induced by
X. We derive a min-max formula which determines the rank function in Rd(G)
when G has maximum degree at most d+ 2 and minimum degree at most d+1.
We also show that if d is even and i(X) ≤ 1

2 [(d+2)|X|− (2d+2)] for all X ⊆ V
with |X| ≥ 2 then E is independent in Rd(G). We conjecture that the latter
result holds for all d ≥ 2 and prove this for the special case when d = 3. We
use the independence result for even d to show that if the connectivity of G is
sufficiently large in comparison to d then E has large rank in Rd(G). We use
the case d = 4 to show that, if G is 10-connected, then G can be made rigid in
R

3 by pinning down approximately three quarters of its vertices.

1 Introduction

We shall only consider graphs without loops or multiple edges. A framework (G, p) in
d-space is a graph G = (V,E) and an embedding p : V → R

d. The rigidity matrix of
the framework is the matrix R(G, p) of size |E| × d|V |, where, for each edge vivj ∈ E,
in the row corresponding to vivj, the entries in the d columns corresponding to vertex
i (j) contain the d coordinates of (p(vi) − p(vj)) ((p(vj) − p(vi)), respectively), and
the remaining entries are zeros. See [7] for more details. The rigidity matrix of (G, p)
defines the rigidity matroid of (G, p) on the ground set E by independence of rows of
the rigidity matrix. A framework (G, p) is generic if the coordinates of the points p(v),
v ∈ V , are algebraically independent over the rationals. Any two generic frameworks
(G, p) and (G, p′) have the same rigidity matroid. We call this the d-dimensional
rigidity matroid Rd(G) = (E, rd) of the graph G. We denote the rank of Rd(G) by
rd(G).
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Section 1. Introduction 2

Lemma 1.1. [7, Lema 11.1.3] Let (G, p) be a framework in R
d. Then rankR(G, p) ≤

S(n, d), where n = |V (G)| and

S(n, d) =

{
nd−

(
d+1
2

)
if n ≥ d+ 1(

n
2

)
if n ≤ d+ 1.

We say that a graph G = (V,E) is rigid in R
d if rd(G) = S(n, d). (This definition is

motivated by the fact that if G is rigid and (G, p) is a generic framework on G, then
every smooth deformation of (G, p) which preserves the edge lengths ||p(u)−p(v)|| for
all uv ∈ E, must preserve the distances ||p(w) − p(x)|| for all w, x ∈ V , see [7].) We
say that G is M -independent, M -dependent or an M -circuit in R

d if E is independent,
dependent or a circuit, repectively, in Rd(G). For X ⊆ V , let EG(X) denote the set,
and iG(X) the number, of edges in G[X], that is, in the subgraph induced by X in
G. We use E(X) or i(X) when the graph G is clear from the context. A cover of G
is a collection X of subsets of V , each of size at least two, such that ∪X∈XE(X) = E.

Lemma 1.1 implies the following necessary condition for G to be M -independent.

Lemma 1.2. If G = (V,E) is M-independent in R
d then i(X) ≤ S(|X|, d) for all

X ⊆ V .

It also gives the following upper bound on the rank function.

Lemma 1.3. If G = (V,E) is a graph then

rd(G) ≤ min
X

∑
X∈X

S(|X|, d)

where the minimum is taken over all covers X of G.

The converse of Lemma 1.2 also holds for d = 1, 2. The case d = 1 follows from
the fact that the 1-dimensional rigidity matroid of G is the same as the cycle matroid
of G, see [1, Theorem 2.1.1]. The case d = 2 is a result of Laman [2]. Similarly, the
inequality given in Lemma 1.3 holds with equality when d = 1, 2. The case d = 2 is a
result of Lovász and Yemini [4]. Neither of these statements hold for d ≥ 3. Indeed,
it remains an open problem to find good characterizations for independence or, more
generally, the rank function in the d-dimensional rigidity matroid of a graph when
d ≥ 3.

We show in Section 3 that the converse of Lemma 1.2 holds and that equality holds
in Lemma 1.3 for all d in the special case when G is connected and has maximum
degree at most d + 2 and minimum degree at most d + 1. In addition we show in
Section 4 that if we strengthen the necessary condition for M -indendence given in
Lemma 1.2 to i(X) ≤ (d

2
+ 1)|X| − (d+ 1) then it becomes sufficient to imply that G

is M -independent in R
d for all even d ≥ 2. We conjecture that the latter result holds

for all d ≥ 2 and prove this for the special case when d = 3 in Section 5. In Section 6
we use the result from Section 4 to show that a highly connected graph G has large
rank in Rd(G). We use the case d = 4 in Section 7 to show that, if G is 10-connected,
then G can be fixed in R

3 by pinning down roughly three quarters of its vertices.
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Section 2. Preliminary lemmas 3

2 Preliminary lemmas

We need the following results. The first three lemmas appear in [7].

Lemma 2.1. [7, Lemma 11.1.9] Suppose G = G1 ∪G2.
(a) If |V (G1) ∩ V (G2)| ≥ d and G1, G2 are rigid in R

d then G is rigid in R
d.

(b) If |V (G1) ∩ V (G2)| ≤ 1 and G1, G2 are M-independent in R
d then G is M-

independent in R
d.

Lemma 2.2. [7, Lemma 11.1.1] Let G = (V,E) be a graph and v ∈ V with d(v) ≤ d.
Then G is M-independent in R

d if and only if G− v is M-independent in R
d.

Lemmas 2.2 and 1.2 immediately imply the following elementary result.

Lemma 2.3. Let G be a graph on at most d + 2 vertices. If G 6= Kd+2 then G is
M-independent in R

d. If G = Kd+2 then G is an M-circuit in R
d.

Let v be a vertex in a graph G. Suppose w, x ∈ N(v) and wx 6∈ E(G). We denote
the graph (G− v) +wx by Gwx

v and say that Gwx
v has been obtained by a splitting of

G at v along wx.

Lemma 2.4. [7, Theorem 11.1.7] Let v be a vertex of degree d + 1 in a graph G.
Suppose w, x ∈ N(v) and wx 6∈ E(G). If Gwx

v is M-independent in R
d then G is

M-independent in R
d. Furthermore, if G is M-independent in R

d, then Gyz
v is M-

independent in R
d for some pair y, z ∈ N(v).

The next lemma is folklore. We give a proof for the sake of completeness.

Lemma 2.5. Let G = (V,E) be a graph.
(a) If G is rigid in R

d then G is either d-connected or complete.
(b) If G is an M-circuit in R

d then G is 2-connected and (d+ 1)-edge-connected.

Proof: (a) Suppose G is not complete and not d-connected. Let |V | = n. If n ≤ d+1
then, since G is not complete, rd(G) ≤ |E| <

(
n
2

)
= S(n, d). Hence G is not rigid.

Thus we may suppose that n ≥ d + 2. Since G is not d-connected, we can find
subgraphs G1 = (V1, E1), G2 = (V2, E2) such that G = G1 ∪G2, |V1 ∩ V2| = d− 1 and
|V1|, |V2| ≥ d. Since adding edges to G cannot decrease rd(G), we may suppose that
G1 ∩ G2 = Kd−1. By Lemma 2.3, G1 ∩ G2 is M -independent. Let B be a basis for
Rd(G) containing E(G1∩G2), and Bi = B∩Ei for i ∈ {1, 2}. Let |V1| = n1, |V2| = n2.
Using Lemma 1.1, we have

rd(G) = |B| = |B1|+ |B2| −
(
d− 1

2

)
≤ S(n1, d) + S(n2, d)−

(
d− 1

2

)
= S(n, d)− 1.

Thus G is not rigid.
(b) The first part of (b) follows from Lemma 2.1(b). To verify the second part of (b),
we proceed as follows. Let S be an edge cut in G and (G, p) be a generic framework
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Section 3. Graphs of maximum degree at most d + 2 4

in R
d. Since G is an M -circuit, there exists a nowhere zero self stress for G, see [7,

page 235]. Thus there exists α : E → R− {0} such that for all v ∈ V we have∑
u∈N(v)

α(uv)(p(v)− p(u)) = 0.

This implies (by conservation of flow) that∑
uv∈S

α(uv)(p(v)− p(u)) = 0. (1)

Since (G, p) is generic, we may use (1) to deduce that |S| ≥ d+ 1. •

Let G = (V,E) be a graph. For X, Y, Z ⊆ V , let d(X, Y ) = |E(X ∪ Y )− (E(X) ∪
E(Y ))| and d(X, Y, Z) = |E(X ∪Y ∪Z)− (E(X)∪E(Y )∪E(Z))|. We shall need the
following equalities, which are easy to check by counting the contribution of an edge
to each of the two sides.

Lemma 2.6. Let G be a graph and X,Y ⊆ V (G). Then

i(X) + i(Y ) + d(X, Y ) = i(X ∪ Y ) + i(X ∩ Y ).

Lemma 2.7. Let G be a graph and X, Y, Z ⊆ V (G). Then

i(X) + i(Y ) + i(Z) + d(X,Y, Z) =

= i(X ∪ Y ∪ Z) + i(X ∩ Y ) + i(X ∩ Z) + i(Y ∩ Z)− i(X ∩ Y ∩ Z).

3 Graphs of maximum degree at most d + 2

Let G = (V,E) be a graph and d ≥ 3 be a fixed integer. We denote the maximum
and minimum degrees of G by ∆(G) and δ(G), respectively. We say that G is Laman
if i(X) ≤ S(|X|, d) for all X ⊆ V . Thus G is Laman if i(X) ≤ d|X| −

(
d+1
2

)
for all

X ⊆ V with |X| ≥ d + 2. A set X ⊆ V is critical if |X| ≥ 2 and i(X) = S(|X|, d).
Thus X is critical if either 2 ≤ |X| ≤ d + 1 and G[X] is complete, or |X| ≥ d + 2
and i(X) = d|X| −

(
d+1
2

)
. Note that it follows from this definition that critical sets

X with |X| = d, d+ 1 also satisfy i(X) = d|X| −
(

d+1
2

)
. Let v ∈ V with d(v) = d+ 1.

A splitting of v along two neighbours u,w in a Laman graph G is admissible if the
resulting graph Guw

v is also Laman. Otherwise, it is non-admissible. The following
characterisation of (non-)admissible splits is straightforward.

Lemma 3.1. A splitting of v along u,w is not admissible in G if and only if there
exists a critical set X with u,w ∈ X ⊂ V − v.

We shall also need the following elementary properties of critical sets in Laman
graphs.
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Section 3. Graphs of maximum degree at most d + 2 5

Lemma 3.2. Let G be a Laman graph and v ∈ X ⊂ V with |X| ≥ d and i(X) =
d|X| −

(
d+1
2

)
.

(a) G[X] is connected.
(b) If G[X] is not complete then dX(v) ≥ d for all v ∈ X.

Proof: (a) Suppose H = G[X] is not connected. Then there exists non-empty
subgraphs H1, H2 of H such that H = H1 ∪ H2 and H1 ∩ H2 = ∅. The fact that
|E(H)| = i(X) = d|X| −

(
d+1
2

)
now implies that either H1 or H2 is not Laman and

contradicts the fact that G is Laman.
(b) Since G[X] is not complete we have |X| ≥ d+ 2. Suppose dX(v) ≤ d− 1 for some
v ∈ X. Then i(X − v) ≥ d|X − v| −

(
d+1
2

)
+ 1. This contradicts the fact that G is

Laman. •

Lemma 3.3. Let G = (V,E) be a Laman graph, v be a vertex of degree d + 1 in G,
and V ′ = {x ∈ N(v) : dG(v) ≥ d + 3}. Suppose that G[V ′] is a (possibly empty)
complete graph. Then G has an admissible split at v.

Proof: Arguing by contradiction we suppose that G is a counterexample to the
lemma. Let N(v) = {v1, v2, . . . , vd+1} and suppose that no split at v is admissible.
By Lemma 3.1, we can find a family F of maximal critical subsets of V such that for
each 1 ≤ i < j ≤ d+ 1, there exists X ∈ F with vi, vj ∈ X ⊂ V − v. We may suppose
that F has been chosen such that |F| is minimal. If |F| = 1 then we have F = {X},
N(v) ⊆ X, and i(X + v) = i(X) + d+ 1 = d|X + v| −

(
d+1
2

)
+ 1. This contradicts the

fact that G is Laman. Hence |F| ≥ 2. If G[N(v)] were complete then N(v) would
be critical and we could take F = {N(v)}, contradicting the minimality of |F|. Thus
G[N(v)] is not complete. Relabelling if necessary, and using the fact that G[V ′] is
complete, we may assume that v1v2 6∈ E and dG(v1) ≤ d + 2. Choose X1 ∈ F with
v1, v2 ∈ X1. Since G[X1] is not complete, dX1(v1) ≥ d by Lemma 3.2(b).

Claim 3.4. If Xi, Xj ∈ F , x ∈ N(v) ∩ Xi ∩ Xj and G[Xi], G[Xj] are not complete,
then dG(x) ≥ d+ 3.

Proof: We have dXt(x) ≥ d for t ∈ {i, j} by Lemma 3.2(b). Also |Xi ∩Xj| ≤ d − 1
by Lemma 2.6 and the maximality of Xi. Since vx ∈ E we have

dG(x) ≥ dXi
(x) + dXj

(x)− (|X1 ∩X2| − 1) + 1 ≥ d+ 3.

•

Since |F| ≥ 2, N(v) 6⊆ X1, so there exists a vertex vj ∈ N(v)−X1. Choose vi ∈ X1

with dG(vi) ≤ d + 2, for example vi = v1. There exists Xi,j ∈ F with vi, vj ∈ Xi,j.
Since G[X1] is not complete, vi ∈ X1 ∩ Xi,j, and dG(vi) ≤ d + 2, we may use Claim
3.4 to deduce that G[Xi,j] is complete. Thus vivj ∈ E for all vj ∈ N(v) − X1. In
particular,

d+ 2 ≥ dG(vi) ≥ dX1(vi) + |N(v)−X1|+ 1 ≥ d+ |N(v)−X1|+ 1
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Section 3. Graphs of maximum degree at most d + 2 6

and hence |N(v)−X1| = 1. Relabelling we may assume that N(v)−X1 = {vd+1} and
N(v) ∩ X1 = {v1, v2, . . . , vd}. If vd+1vj ∈ E for all 1 ≤ j ≤ d then X1 + vd+1 would
be a critical set in G contradicting the maximality of X1. Hence we may assume that
vdvd+1 6∈ E. Since vivd+1 ∈ E whenever dG(vi) ≤ d + 2, we have dG(vd) ≥ d + 3.
Since G[V ′] is complete, this implies that dG(vd+1) ≤ d + 2. Choose X2 ∈ F with
vd, vd+1 ∈ X2. Then G[X2] is not complete so dX2(vd+1) ≥ d. Since dG(vd+1) ≤ d + 2
and G[X2] is not complete, Claim 3.4 implies that vd+1vi ∈ E for all vi ∈ X1 − X2.
The facts that dX2(vd+1) ≥ d and dG(vd+1) ≤ d + 2 now give |X1 − X2| = 1. Hence
|X1 ∩ X2| = d − 1. Since d(X1, X2) = 1, Lemma 2.6 now implies that X1 ∪ X2 is
critical in G. This contradicts the maximality of X1. •

The following example shows that Lemma 3.3 becomes false if we allow G[V ′] to
contain two non-adjacent vertices of degree greater than d+2. Let G = G′−xy where
G′ = G1 ∪G2, V (G1) ∩ V (G2) = {x, y}, and Gi is a complete graph on d+ 2 vertices
for each i ∈ {1, 2}. Then G is Laman and has no admissible split at any vertex of
degree d+ 1.

Theorem 3.5. Let G be a connected graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1.
Then G is M-independent if and only if G is Laman.

Proof: Necessity follows from Lemma 1.2. To prove sufficiency, we proceed by induc-
tion on |V |. Since all graphs on at most d+ 1 vertices are M -independent by Lemma
2.5(b), we may assume |V | ≥ d+ 2. Let v be a vertex of minimum degree in G.

Suppose G − v is disconnected. Since G is connected and ∆(G) ≤ d + 2, each
component Hi = (Vi, Ei) of G− v satisfies the hypotheses of the theorem, and hence
is M -independent by induction. Since dHi+v(v) ≤ d, G[Vi + v] is M -independent by
Lemma 2.2. Hence G is M -independent by Lemma 2.1(b).

Thus we may assume G − v is connected. If d(v) ≤ d then G − v satisfies the
hypotheses of the theorem. Hence G − v is M -independent by induction and G is
M -independent by Lemma 2.2. Thus we may also assume that d(v) = d + 1. By
Lemma 3.3, there is an admissible split Gv of G at v. Since G − v is connected, Gv

is connected. Since ∆(G) ≤ d + 2, we have ∆(Gv) ≤ d + 2 and δ(Gv) ≤ d + 1. By
induction Gv is M -independent. Thus G is M -independent by Lemma 2.4. •

Using Theorem 3.5 and Lemma 2.5(b) we may deduce:

Corollary 3.6. Let G = (V,E) be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1.
Then G is an M-circuit if and only if G is 2-connected, |E| = d|V | −

(
d+1
2

)
+ 1, and

i(X) ≤ d|X| −
(

d+1
2

)
for all X ⊆ V with d+ 2 ≤ |X| ≤ |V | − 1.

Corollary 3.7. Let G = (V,E) be a graph with ∆(G) ≤ d + 2 and δ(G) ≤ d + 1. If
G is an M-circuit then G− e is rigid for all e ∈ E.

Corollary 3.8. Let G be a connected M-independent graph with ∆(G) ≤ d + 2 and
δ(G) ≤ d+1. Let X1, X2 be maximal critical subsets of V and suppose that |Xi| ≥ d+2
for each i ∈ {1, 2}. Then X1 ∩X2 = ∅.
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Section 3. Graphs of maximum degree at most d + 2 7

Proof: Suppose X1 ∩ X2 6= ∅ and choose x ∈ X1 ∩ X2. Since G is M -independent
and Xi is critical, Theorem 3.5 implies that Hi = G[Xi] is rigid for each i ∈ {1, 2}.
By Lemma 2.1(a), dXi

(x) ≥ d. Thus d+ 2 ≥ dG(x) = dX1(x) + dX2(x)− dX1∩X2(x) ≥
d+ d− dX1∩X2(x) and dX1∩X2(x) ≥ d− 2. Hence |X1 ∩X2| ≥ d− 1.

We first consider the case when |X1 ∩X2| = d − 1. Then G[X1 ∩X2] is complete
and dXi

(x) = d for each i ∈ {1, 2} and all x ∈ X1 ∩X2. Since d ≥ 3 we may choose
y ∈ X1 ∩ X2 − {x}. Since G[X1] is rigid G[X1] − x is rigid by Lemma 2.2. This
contradicts Lemma 2.1(a) since |X1 − x| ≥ d+ 1 and dX1−x(y) = d− 1.

Hence |X1 ∩ X2| ≥ d. Lemma 2.6 and Theorem 3.5 now imply that X1 ∪ X2 is
critical, contradicting the maximality of X1, X2. •

We next use Theorem 3.5 to determine the rank function for graphs of low degree.
Let G = (V,E) be a graph and X be a cover of G. For X ⊆ V let f(X) = S(|X|, d)
and val(X ) =

∑
X∈X f(X). We say that X is 1-thin if |Xi ∩Xj| ≤ 1 for all distinct

Xi, Xj ∈ X .

Theorem 3.9. Let G = (V,E) be a connected graph with ∆(G) ≤ d+ 2 and δ(G) ≤
d + 1. Then r(E) = minX val(X ) where the minimum is taken over all 1-thin covers
X of G.

Proof: We have r(E) ≤ val(X ) for all covers X of G by Lemma 1.3 so it only remains
to show that there exists a 1-thin cover X of G with r(E) = val(X ). Let B be a basis
for R(G), H = (V,B),

X0 = {X ⊆ V : X is a maximal critical set in H and |X| ≥ d+ 2},

X1 = {{u, v} : uv ∈ B and uv 6∈ EG(X) for all X ∈ X0}
and X = X0 ∪ X1. Then X is 1-thin by Corollary 3.8.

Since each edge of H belongs to a critical subgraph of H, X covers H. To see that
X covers G, let e ∈ E −B. Then e ∈ E(C) ⊆ B + e for a unique M -circuit C. Since
C is a subgraph of G, C − e is rigid by Corollary 3.7 and |V (C)| ≥ d+ 2 by Lemma
2.5(b). Thus V (C) ⊆ X for some X ∈ X0 and e ∈ EG(X).

We complete the proof by showing that val(X ) = r(E). Let Bi = B ∩ EH(Xi) for
each Xi ∈ X . Since Xi is critical in H we have |Bi| = f(Xi). Since X is 1-thin the
sets Bi are pairwise disjoint and hence

r(E) = |B| =
∑

Xi∈X

|Bi| = val(X ).

•

The graph G = Kd+2,d+2 shows that Theorems 3.5 and 3.9 become false when d ≥ 4
if we remove the hypothesis that δ(G) ≤ d + 1. It is Laman and is an M -circuit, see
[7, Example 11.2.4]. Thus it is not M -independent. Furthermore val(X ) ≥ |E| for
each 1-thin cover X of G (and r(E) = |E| − 1).

Similarly, Theorems Theorems 3.5 and 3.9 become false when d ≥ 4 if we remove the
hypothesis thatG is connected since we takeG to be the disjoint union ofG = Kd+2,d+2
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Section 4. Sparse graphs 8

and an arbitrary M -independent graph of low degree. It is conceivable however that
these results remain valid without the hypotheses that δ(G) ≤ d+1 and G is connected
in the special case when d = 3.

Conjecture 3.10. Let G be a graph with ∆(G) ≤ 5. Then G is M-independent in
R

3 if and only if G is Laman.

Conjecture 3.11. Let G be a graph with ∆(G) ≤ 5. Then r3(E) = minX val(X )
where the minimum is taken over all 1-thin covers X of G.

Note that by Theorems 3.5 and 3.9, it would suffice to prove the above conjectures
for 5-regular graphs.

Remark Let G = (V,E) be a graph and d ≥ 1 be an integer. For E ′ ⊆ E, we say
that E ′ is L-independent if either E ′ = ∅, or E ′ 6= ∅ and the subgraph of G induced
by E ′ is Laman. This definition of independence gives the rigidity matroid of G when
d ≤ 2. We can show that the definition also gives a matroid, Ld(G), when d ≥ 3
and ∆(G) ≤ d + 2. The rank function of Ld(G) is r̃d(E ′) = minX val(X ), where
the minimum is taken over all 1-thin covers X of the subgraph of G induced by E ′.
Theorem 3.9 shows that Ld(G) = Rd(G) when G is connected, ∆(G) ≤ d + 2 and
δ(G) ≤ d+ 1. Conjectures 3.10 and 3.11 assert that L3(G) = R3(G) when ∆(G) ≤ 5.
This equality does not hold in general since Ld(Kd+2,d+2) 6= Rd(Kd+2,d+2) when d ≥ 4.

4 Sparse graphs

Let G = (V,E) be a graph and k be a positive integer. We say that a subset S of E
is independent if |S ′| ≤ k|V (S ′)| − (2k − 1) for all ∅ 6= S ′ ⊆ S, or equivalently, if

iG[S′](X) ≤ k|X| − (2k − 1)

for all S ′ ⊆ S and all X ⊆ V (S ′) with |X| ≥ 2. It follows from the theory of
submodular functions (see [7, Appendix]) that this definition of independence gives
rise to a matroid Nk(G) with ground set E, for every k. It also follows that the rank
of E in Nk(G) can be expressed as follows (see [4] for the special case k = 2). Let r̄k

denote the rank function of Nk. Then

r̄k(E) = min
X

{∑
X∈X

(k|X| − (2k − 1))

}
(2)

where the minimum is taken over all collections X = {X1, X2, ..., Xt} of subsets of
V for which {E(X1), E(X2), ..., E(Xt)} partitions E. (In fact, it suffices to minimize
over 1-thin covers of G.)

Suppose that E is independent inNk(G). Let v be a vertex of G and Gv be obtained
by a splitting of G at v. We say that this splitting is feasible if E(Gv) is independent
in Nk(Gv).
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Section 5. Sparse graphs in 3-space 9

Lemma 4.1. Let G = (V,E) be a graph and v be a vertex of G of degree 2k − 1.
Suppose that E is independent in Nk(G). Then some splitting of G at v is feasible.

Proof: Suppose that G has no feasible splitting at v. Let S = {wx : w, x ∈ NG(v)},
H = (V,E ∪ S), N = Nk(H) and r be the rank function in N . Let G − v = G′ =
(V − v, E ′). Since E is independent in N and E ′ ⊆ E, E ′ is independent in N . If
r(E ′+wx) = r(E ′)+1 for some wx ∈ S then E ′+wx would be independent in N and
Gwx

v would be a feasible splitting of G at v. Thus r(E ′ + wx) = r(E ′) for all wx ∈ S
and hence r(E ′ ∪S) = r(E ′). Let T = E−E ′. Since H[S] = K2k−1, S is independent
in N . Thus S can be extended to a basis B of N . Since H[T ∪ S] = K2k, T ∪ S is
dependent in N . Thus B contains at most |T | − 1 = 2k − 2 edges in T . It follows
that

r(E ∪ S) = r(E ′ ∪ S ∪ T ) ≤ r(E ′ ∪ S) + 2k − 2 = r(E ′) + 2k − 2 = r(E)− 1.

This contradicts the fact that r is monotone. •

Theorem 4.2. Let G = (V,E) be a graph and let d be an even integer. If E is
independent in N d

2
+1(G) then E is independent in Rd(G).

Proof: Suppose the theorem is false and let G be a smallest counterexample. Let v
be a vertex of minimum degree in G. Since E is independent in N d

2
+1(G), we have

|E| ≤ (d
2

+ 1)|V | − (d+ 1) and hence d(v) ≤ d+ 1.
Suppose d(v) ≤ d. Let G − v = G′ = (V − v, E ′). Since E is independent in
N d

2
+1(G), E ′ is independent in N d

2
+1(G

′). By induction E ′ is independent in Rd(G′).

Using Lemma 2.2, we deduce that E is independent in Rd(G).
Hence we may assume that d(v) = d + 1. By Lemma 4.1, G has a feasible split

Gv = (V − v, E ′′) at v. Then E ′′ is independent in N d
2
+1(Gv). By induction E ′′ is in-

dependent inRd(Gv). Using Lemma 2.4, we deduce that E is independent inRd(G). •

Using the definition of independence in R(G) we immediately obtain:

Corollary 4.3. Let G = (V,E) be a graph and let d be an even integer. If i(X) ≤
(d

2
+ 1)|X| − (d+ 1) for all X ⊆ V with |X| ≥ 2 then G is M-independent in R

d.

Note that the case d = 2 corresponds to (the difficult part of) Laman’s theorem.
We believe that Corollary 4.3 is valid for odd values of d as well.

Conjecture 4.4. Let G = (V,E) be a graph. If i(X) ≤ (d
2

+ 1)|X| − (d + 1) for all
X ⊆ V with |X| ≥ 2 then G is M-independent in R

d.

5 Sparse graphs in 3-space

In this section we prove (a slightly stronger form of) Conjecture 4.4 for d = 3.
Throughout this section M -independent refers to independence in R3(G).
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Section 5. Sparse graphs in 3-space 10

Theorem 5.1. Let G = (V,E) be a graph. If

i(X) ≤ 1

2
(5|X| − 7) (3)

for all X ⊆ V with |X| ≥ 2 then G is M-independent.

Proof: We use induction on |V |. The theorem holds if |V | = 2 since K2 is M -
independent. Hence suppose |V | ≥ 3. Let v be a vertex of minimum degree in G.
Since |E| = i(V ) ≤ (5|V | − 7)/2, v has degree at most four. If d(v) ≤ 3 then we may
apply induction to deduce that G − v is M -independent. Then G is M -independent
by Lemma 2.2. Hence we may suppose that d(v) = 4. If wx 6∈ E(G) for some
w, x ∈ E(G) and Gwx

v satisfies the hypothesis of the theorem then we are done by
induction and Lemma 2.4. Thus we may suppose that for each pair w, x of neighbours
of v, there exists a subset X of V − v such that i(X) ≥ (5|X| − 8)/2 and w, x ∈ X.
We shall say that such a set is a critical set covering w, x.

Claim 5.2. Suppose i(X) ≥ (5|X| − 9)/2 for some X ⊆ V − v. Then N(v) 6⊆ X.

Proof: If N(v) ⊆ X then

i(X + v) = i(X) + 4 ≥ (5|X| − 1)/2 = (5|X + v| − 6)/2.

This contradicts (3). •

Let X1, X2, . . . , Xp be a family of maximal critical sets which cover each pair of
neighbours of v and such that p is as small as possible. Claim 5.2 implies that p ≥ 2.

Claim 5.3. |Xi ∩N(v)| = 2 for all 1 ≤ i ≤ p, and hence p = 6.

Proof: By Claim 5.2 and the definition of the sets Xi, we have 2 ≤ |Xi ∩N(v)| ≤ 3
for all 2 ≤ i ≤ p. For a contradiction suppose, without loss of generality, that
|X1 ∩N(v)| = 3.

We first show that |X1 ∩ Xi| = 1 for all 2 ≤ i ≤ p. If this is not the case then,
relabelling if necessary, we have |X1 ∩X2| ≥ 2. Then Lemma 2.6 implies that

i(X1 ∪X2) ≥ i(X1) + i(X2)− i(X1 ∩X2)

≥ (5|X1| − 8)/2 + (5|X2| − 8)/2− (5|X1 ∩X2| − 7)/2

= (5|X1 ∪X2| − 9)/2.

This contradicts Claim 5.2 since the definition of the sets X1, X2 and the fact that
|X1 ∩N(v)| ≥ 3 implies that N(v) ⊆ X1 ∪X2. Hence |X1 ∩Xi| = 1 for all 2 ≤ i ≤ p.
In particular, |Xi ∩ N(v)| = 2 for all 2 ≤ i ≤ p and hence p = 4. We also have
X1 ∩X2 ∩X3 = ∅.

Thus, by Lemma 2.7, we get

i(X1 ∪X2 ∪X3) ≥ i(X1) + i(X2) + i(X3)− i(X2 ∩X3). (4)
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Section 5. Sparse graphs in 3-space 11

Using (3) and the fact that |X2 ∩X3| ≥ 1, we have i(X2 ∩X3) ≤ (5|X2 ∩X3| − 5)/2.
Since X1, X2, X3 are critical, (4) gives i(X1 ∪ X2 ∪ X3) ≥ (5|X1| − 8)/2 + (5|X2| −
8)/2 + (5|X3| − 8)/2 − (5|X2 ∩ X3|)/2 = (5|X1 ∪ X2 ∪ X3| − 24 + 5 + 10)/2 =
(5|X1 ∪X2 ∪X3| − 9)/2. This contradicts Claim 5.2 since N(v) ⊆ X1 ∪X2 ∪X3. •

Claim 5.4. |Xi ∩Xj| ≤ 1 for all 1 ≤ i < j ≤ 6.

Proof: By symmetry it is sufficient to consider the pair X1, X2. For a contradiction
suppose that |X1 ∩X2| ≥ 2.

We first consider the case when X1 ∩X2 ∩N(v) = ∅. By Lemma 2.6 we have

i(X1 ∪X2) ≥ i(X1) + i(X2)− i(X1 ∩X2).

Now (3) and the facts that |X1 ∩X2| ≥ 2 and X1, X2 are critical, imply that i(X1 ∪
X2) ≥ (5|X1 ∪X2| − 9)/2. Since X1 ∩X2 ∩N(v) = ∅, we have N(v) ⊆ X1 ∪X2. This
contradicts Claim 5.2.

Thus X1∩X2∩N(v) 6= ∅. By Lemma 2.6, i(X1∪X2) ≥ i(X1)+ i(X2)− i(X1∩X2).
By (3), i(X1 ∩X2) ≤ (5|X1 ∩X2| − 7)/2. The fact that X1 is a maximal critical set
now implies that

i(X1 ∪X2) = (5|X1 ∩X2| − 9)/2 (5)

i(X1 ∩X2) = (5|X1 ∩X2| − 7)/2. (6)

Let X1 ∩N(v) = {w, x} and X2 ∩N(v) = {x, y}. Relabelling if necessary we may
suppose that X3∩N(v) = {w, y}. By Lemma 2.6, i(X1∩X2) + i(X3) ≤ i((X1∩X2)∪
X3) + i(X1 ∩ X2 ∩ X3). Using (6), and the facts that x /∈ X3 and X3 is a maximal
critical set, we deduce that i(X1 ∩X2 ∩X3) ≥ (5|X1 ∩X2 ∩X3| − 6)/2. Hypothesis
(3) now implies that |X1 ∩X2 ∩X3| ≤ 1 and hence i(X1 ∩X2 ∩X3) = 0. By Lemma
2.7 we have

i(X1∪X2∪X3) ≥ i(X1) + i(X2) + i(X3)− i(X1∩X2)− i(X1∩X3)− i(X2∩X3). (7)

Suppose |X1 ∩X2 ∩X3| = 1. Then |Xi ∩Xj| ≥ 2 for all 1 ≤ i < j ≤ 3 and by (3),
i(Xi ∩Xj) ≤ (5|X1 ∩X2| − 7)/2 for all 1 ≤ i < j ≤ 3. Substitution into (7) now gives
i(X1 ∪ X2 ∪ X3) ≥ (5|X1 ∪ X2 ∪ X3| − 8)/2. This contradicts the fact that X1 is a
maximal critical set.

Thus X1∩X2∩X3 = ∅. By (3) and the facts that |X1∩X3| ≥ 1 and |X2∩X3| ≥ 1,
we have

i(X1 ∩X3) ≤ (5|X1 ∩X2| − 5)/2, (8)

i(X2 ∩X3) ≤ (5|X1 ∩X2| − 5)/2. (9)

Substituting (6), (8) and (9) into (7) and using the criticality of X1, X2, X3, we obtain
i(X1 ∪X2 ∪X3) ≥ (5|X1 ∪X2 ∪X3| − 7)/2. This again contradicts the fact that X1

is a maximal critical set and completes the proof of the claim. •
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We can now complete the proof of the Theorem. By Claims 5.3 and 5.4,

i(∪6
i=1Xi) ≥

6∑
i=1

i(Xi),

and

| ∪6
i=1 Xi| ≤ (

6∑
i=1

|Xi|)− 8.

Since each set Xi is critical we have

i(∪6
i=1Xi) ≥

6∑
i=1

i(Xi) =
6∑

i=1

(5|Xi| − 8)/2 ≥ (5| ∪6
i=1 Xi| − 8)/2.

This contradicts the fact that X1 is a maximal critical set. •

We conjecture that the multiplicative constant in the upper bound on i(X) can
be weakened in the previous theorem as follows. It is well-known that there exist
M -dependent graphs G = (V,E) with i(X) ≤ 3|X| − 6 for all X ⊆ V , |X| ≥ 3. We
also have M -dependent examples for i(X) ≤ 3|X| − 7, but perhaps graphs satisfying
i(X) ≤ 3|X| − 8 for all X ⊆ V , |X| ≥ 5 are M -independent.

6 Highly connected graphs

By using the proof method of Lovász and Yemini [4, Theorem 2], we shall prove that
every (4k − 2)-connected graph G has rank k|V (G)| − (2k − 1) in Nk(G). We shall
use the following elementary lemma on integers.

Lemma 6.1. Suppose k is a positive integer and let a1, a2, . . . , at be integers such that
t ≥ 2, ai ≥ 2 for 1 ≤ i ≤ t, and

∑t
i=1(ai − 1) ≥ 4k − 2. Then

g(a1, a2, . . . , at) :=
t∑

i=1

(
k − 2k − 1

ai

)
≥ k.

Proof: We may suppose that a1, a2, . . . , at have been chosen such that g(a1, a2, . . . , at)
is as small as possible. Relabelling if necessary we have a1 ≥ ai for all 2 ≤ i ≤ t. If
t ≥ 2k, then the fact that ai ≥ 2 for all 1 ≤ i ≤ t implies that g(a1, a2, . . . , at) ≥ k.
Hence we may assume that t ≤ 2k − 1.

Suppose that aj ≥ 3 for some 2 ≤ j ≤ t. Relabelling if necessary we may assume
that j = 2. Let a′1 = a1 + 1, a′2 = a2 − 1, and a′i = ai for 3 ≤ j ≤ t. Since a1 ≥ a2, we
have

(2k − 1)−1[g(a1, a2, . . . , at)− g(a′1, a
′
2, . . . , a

′
t)] =

1

(a2 − 1)a2

− 1

a1(a1 + 1)
> 0.

This contradicts the minimality of g(a1, a2, . . . , at) and hence aj = 2 for all 2 ≤ j ≤ t.
Since

∑t
i=1(ai − 1) ≥ 4k − 2, we have a1 ≥ 4k − t.
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Suppose t ≥ 3. Let a′′1 = a1 + 1 and a′′i = ai for 2 ≤ j ≤ t− 1. Since t ≤ 2k − 1 we
have a1 ≥ 4k − t ≥ 2k + 1. Thus

g(a1, a2, . . . , at)− g(a′′1, a
′′
2, . . . , a

′′
t−1) = − 2k − 1

a1(a1 + 1)
+

1

2
> 0.

This contradicts the minimality of g(a1, a2, . . . , at) and hence t = 2. We now have
a1 ≥ 4k − t = 4k − 2, a2 = 2 and g(a1, a2) ≥ k. •

Theorem 6.2. Every (4k− 2)-connected graph G = (V,E) has r̄k(G) = k|V |− (2k−
1).

Proof: For a contradiction suppose that the theorem is false and let G = (V,E) be
a counterexample (that is, a (4k− 2)-connected graph with r̄k(G) < k|V | − (2k− 1))
with the smallest number of vertices, and subject to this, with the largest number of
edges.

By (2), there is a family of subsets {X1, X2, . . . , Xt} of V such that {E(X1),
E(X2), . . . , E(Xt)} partitions E, |Xi| ≥ 2 for 1 ≤ i ≤ t, and

t∑
i=1

(k|Xi| − (2k − 1)) < k|V | − (2k − 1). (10)

By the maximality of |E|, G[Xi] is complete for all 1 ≤ i ≤ t.

Claim 6.3. Each vertex v ∈ V is contained in at least two sets Xi.

Proof: Suppose the claim is false. Then, after relabelling if necessary, there exists a
vertex v for which v ∈ Xt and v /∈ Xi, 1 ≤ i ≤ t− 1 hold. Then all the edges incident
to v are in G[Xt] (hence |Xt| ≥ 4k − 1, since d(v) ≥ 4k − 2) and the neighbours of v
induce a complete subgraph of G. Let G′ = G − v, X ′i = Xi, for 1 ≤ i ≤ t − 1, and
X ′t = Xt − {v}. By (10) we have

t∑
i=1

(k|X ′i| − (2k − 1)) =
t∑

i=1

(k|Xi| − (2k − 1))− k

< k|V | − (2k − 1)− k = k|V (G′)| − (2k − 1).

Since G is a counterexample with as few vertices as possible, G′ cannot be (4k − 2)-
connected. This implies that either G is a complete graph on 4k− 1 vertices or there
is a vertex separator of size 4k− 2 in G which contains v. In the former case Xt = V
must hold, which contradicts (10). In the latter case, since G is (4k − 2)-connected,
each component of G−T contains at least one neighbour of v. But this is impossible,
since the neighbours of v induce a complete graph in G. •

Since G is (4k − 2)-connected, we have d(v) ≥ 4k − 2 for each v ∈ V , and hence∑
Xi3v

(|Xi| − 1|) ≥ 4k − 2. (11)
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Section 7. Pinning down graphs in 3-space 14

Claim 6.4. For each vertex v ∈ V we have∑
Xi3v

(
k − 2k − 1

|Xi|

)
≥ k. (12)

Proof: Without loss of generality suppose that v ∈ X1, ..., Xr, v /∈ Xr+1, ..., Xt, and
|X1| ≥ |X2| ≥ ... ≥ |Xr|. By Claim 6.3 we have r ≥ 2. Now the claim follows from
(11) and Lemma 6.1 by letting ai = |Xi|. •

To finish the proof we take the sum of (12) over all vertices of G and obtain

k|V | ≤
∑
v∈V

∑
Xi3v

(
k − 2k − 1

|Xi|

)
=

t∑
i=1

|Xi|
(
k − 2k − 1

|Xi|

)
=

t∑
i=1

(k|Xi| − (2k − 1)).

This contradicts (10) and completes the proof. •

Using Theorem 6.2 and Corollary 4.3 we obtain:

Corollary 6.5. Let d be an even integer. Then every (2d+ 2)-connected graph G has
rd(G) ≥ (d

2
+ 1)|V | − (d+ 1).

The special case d = 2 of the corollary (which implies that 6-connected graphs are
rigid in two dimensions) was proved by Lovász and Yemini [4, Theorem 2].

7 Pinning down graphs in 3-space

A pinning set for a d-dimensional framework (G, p), is a set P ⊆ V such that the
d|V − P | columns of Rd(G, p) indexed by V − P are linearly independent. (This
definition is motivated by the fact that if P is a pinning set for (G,P ), then every
smooth deformation of (G, p) which preserves all edge lengths of G and leaves the
points p(u), u ∈ P , fixed must leave all points p(v), v ∈ V , fixed. Thus (G, p)
becomes ‘rigid’ when we ‘pin down’ the vertices in P , see [6, Statement 8.2.1].) The
pinning number, pind(G, p), of (G, p) is defined to be the size of a smallest pinning
set for (G, p). Since the pinning number of any two generic frameworks on G is the
same, we may define the pinning number of G, pind(G), as the pinning number of
(G, p) of any generic framework (G, p). It is easy to see that pind(G) ≤ pind(G, p) for
all frameworks (G, p).

Lovász [3] gives a polynomial time algorithm for computing pin2(G, p) for any
2-dimensional framework (G, p). This gives rise to a randomised algorithm for com-
puting pin2(G) in polynomial time, but there is, as yet, no deterministic polynomial
algorithm for determining pin2(G). Mansfield [5] proved that the problem of comput-
ing pin3(G, p) is NP-hard for 3-dimensional frameworks (G, p). He also showed that
computing pin3(G) for some graph G is NP-hard.

By using Theorem 4.2 we shall prove that highly connected graphs have relatively
small pinning number in 3-space. This connection between high connectivity and
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rigidity in 3-space may be considered as a first step towards the Lovász-Yemini con-
jecture [4], which asserts that sufficiently highly connected (perhaps 12-connected)
graphs are rigid in 3-space (and hence their pinning number is three). Note that
there exists a family of 11-connected graphs whose pinning number grows linearly
with |V |.

Theorem 7.1. Let G = (V,E) be a 10-connected graph. Then pin3(G) ≤ 3|V |
4

+ 4.

Proof: Let (G, p) be a 4-dimensional generic framework on G and R4(G, p) be the
rigidity matrix of (G, p). Since the framework is generic, rankR4(G, p) = r4(G). Let
C be the set of columns of R4(G, p) and Ci be the columns in C corresponding to the
i’th coordinate, for 1 ≤ i ≤ 4.

By Corollary 6.5 it follows that rankR4(G, p) ≥ 3|V |− 5. Let I be a set of 3|V |− 5
linearly independent columns in R4(G, p). Relabelling if necessary we may suppose
that |I ∩ C4| ≤ |I|/4. Let (G, p′) be the projection of (G, p) onto the subspace of R

4

represented by the first three coordinates. Then R3(G, p
′) is obtained from R4(G, p) by

deleting the columns of C4. Thus R3(G, p
′) contains at least 3|I|/4 = (9|V | − 15)/4

columns of I. This implies that I covers at least |V |/4 − 4 triples of columns of
R3(G, p

′) corresponding to some set Y ⊂ V . Hence V − Y is a pinning set for (G, p′)

and pin3(G) ≤ pin3(G, p
′) ≤ 3|V |

4
+ 4. •
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