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Connected rigidity matroids and unique realizations
of graphs

Bill Jackson? and Tibor Jordán??

Abstract

A d-dimensional framework is a straight line embedding of a graph G in
R

d. We shall only consider generic frameworks, in which the co-ordinates of
all the vertices of G are algebraically independent. Two frameworks for G are
equivalent if corresponding edges in the two frameworks have the same length.
A framework is a unique realization of G in R

d if every equivalent framework
can be obtained from it by a rigid congruence of R

d. Bruce Hendrickson proved
that if G has a unique realization in R

d then G is (d + 1)-connected and redun-
dantly rigid. He conjectured that every realization of a (d + 1)-connected and
redundantly rigid graph in R

d is unique. This conjecture is true for d = 1 but
was disproved by Robert Connelly for d ≥ 3. We resolve the remaining open
case by showing that Hendrickson’s conjecture is true for d = 2. As a corol-
lary we deduce that every realization of a 6-connected graph as a 2-dimensional
generic framework is a unique realization. Our proof is based on a new inductive
characterization of 3-connected graphs whose rigidity matroid is connected.

1 Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. A
d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is a map
from V to R

d. We consider the framework to be a straight line embedding of G in R
d

in which the length of an edge uv ∈ E is given by the Euclidean distance between the
points p(u) and p(v). Two frameworks (G, p) and (G, q) are equivalent if corresponding
edges of the two frameworks have the same length. We say that two frameworks (G, p),
(G, q) are congruent if there is a rigid congruence (i.e. translation or rotation) of R

d

which maps p(v) onto q(v) for each v ∈ V . We shall say that (G, p) is a unique
realization of G in R

d if every framework which is equivalent to (G, p) is congruent
to (G, p). The unique realization problem is to decide whether a given realization
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Section 1. Introduction 2

is unique. Saxe [14] proved that this problem is NP-hard. We obtain a problem of
different type, however, if we exclude ‘degenerate’ cases. A framework (G, p) is said
to be generic if the coordinates of all the points are algebraically independent over
the rationals. In what follows we shall consider the unique realization problem for
generic frameworks.

A simple necessary condition for unique realization of generic frameworks is rigidity.
Intuitively, this means that if we think of a d-dimensional framework (G, p) as a
collection of bars and joints where points correspond to joints and each edge to a
rigid bar joining its end-points, then the framework is rigid if it has no non-trivial
continuous deformations. It is known [18] that rigidity is a generic property, that
is, the rigidity of (G, p) depends only on the graph G, if (G, p) is generic. We say
that the graph G is rigid in R

d if every generic realization of G in R
d is rigid. (A

combinatorial definition for the rigidity of G in R
2 will be given in Section 2 of this

paper. We refer the reader to [18, 19] for a formal definition and detailed survey of
the rigidity of d-dimensional frameworks.)

The necessary condition of rigidity was strengthened by Hendrickson [9] as follows.
A graph G is 2-rigid in R

d if deleting any edge of G results in a graph which is rigid
in R

d. (Other authors have used the terms redundantly rigid and edge birigid for
2-rigid.) By using methods from differential topology, Hendrickson proved that the
2-rigidity of G is a stronger necessary condition for the unique realizability of a generic
framework (G, p).

Hendrickson [9] also pointed out that the (d + 1)-connectivity of G is another
necessary condition for a d-dimensional framework (G, p) to be a unique realization
of G: if G has at least d + 2 vertices and has a vertex separator of size d, then we
can obtain an equivalent framework to (G, p) by reflecting G along this separator.
Summarising we have

Theorem 1.1. [9] If a generic framework (G, p) is a unique realization of G in R
d

then either G is the complete graph with at most d + 1 vertices, or the following
conditions hold:
(a) G is (d+ 1)–connected, and
(b) G is 2-rigid.

Hendrickson [7, 8, 9] conjectured that conditions (a) and (b) are sufficient to guar-
antee that any generic framework (G, p) is a unique realization of G. This conjecture
is easy to prove for d = 1 since G is rigid in R if and only if G is connected; G is
2-rigid in R if and only if G is 2-edge-connected; and (G, p) is a unique generic real-
ization of G in R if and only if G is 2-connected. On the other hand, Connelly [3] has
shown that Hendrickson’s conjecture is false for d ≥ 3. We shall settle the remaining
case by showing that the conjecture is true for d = 2. As a corollary we deduce that
unique realizability is also a generic property, that is to say the unique realizability
of a 2-dimensional generic framework (G, p) depends only on the graph G. Following
Connelly [3], we say that a graph G is globally rigid in R

d if every generic realization
of G in R

d is a unique realization. Our solution of the conjecture implies that G is
globally rigid in R

2 if and only if G is a complete graph on at most three vertices or
G is 3-connected and 2-rigid.
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Section 1. Introduction 3

Our proof of the conjecture is based on an inductive construction for all 3-connected
2-rigid graphs. We shall show that every graph in this family can be built up from
K4 (which is globally rigid) by an appropriate sequence of operations, where each of
the two operations we use preserves global rigidity.

One operation is edge addition: we add a new edge connecting some pair of non-
adjacent vertices. The other is 1-extension: we subdivide an edge uv by a new vertex
z, and add a new edge zw for some w 6= u, v. Clearly, the first operation preserves
global rigidity. So does the second. This fact follows from a deep result of Connelly
[4] (see also [2],[8]), who developed a sufficient condition for the global rigidity of a
generic framework in terms of the rank of its ‘stress matrix’. Based on this condition,
he proved that if G is globally rigid in R

2 and G′ is obtained from G by a 1-extension,
then G′ is also globally rigid in R

2.
In what follows we shall assume that d = 2. In this case both conditions in Hendrick-

son’s conjecture can be characterized (and efficiently tested) by purely combinatorial
methods. This is straightforward for 3-connectivity. In the case of 2-rigidity, the com-
binatorial characterization and algorithm are based on the following result of Laman
[11]. For a graph (G,E) and a subset X ⊆ V let iG(X) (or simply i(X) when it is
obvious to which graph we are referring) denote the number of edges in the subgraph
induced by X in G. The graph G is said to be minimally rigid if G is rigid, and G− e
is not rigid for all e ∈ E.

Theorem 1.2. [11] A graph G = (V,E) is minimally rigid in R
2 if and only if

|E| = 2|V | − 3 and

i(X) ≤ 2|X| − 3 for all X ⊂ V with |X| ≥ 2. (1)

Note that a graph is rigid if and only if it has a minimally rigid spanning subgraph.
It can be seen from Theorem 1.2 that a 2-rigid graph G = (V,E) will have at least

four vertices and at least 2|V | − 2 edges. We call graphs which are 2-rigid and have
this minimum number of edges M -circuits. Motivated by Hendrickson’s conjecture,
Connelly conjectured (see e.g. [6, p.99], [18, p.188]) in the 1980’s that all 3-connected
M -circuits can be obtained from K4 by 1-extensions. It is easy to see that the 1-
extension operation preserves 3-connectivity and that it creates an M -circuit from an
M -circuit. The other direction is more difficult. It is equivalent to saying that every
3-connected M -circuit on at least five vertices has a vertex of degree three which can
be “suppressed” by the inverse operation to 1-extension, so that the resulting graph
is a smaller 3-connected M -circuit.

The inverse operation to 1-extension is called splitting off: it chooses a vertex v of
degree three in a graph G, deletes v (and the edges incident to v) and adds a new edge
connecting two non-adjacent neighbours of v. If G is a 3-connected M -circuit with
at least five vertices and at least one of the splittings of v results in a 3-connected
M -circuit, then we say that the vertex v is feasible. It can be seen that each M -circuit
G has at least four vertices of degree three. It is not true, however, that each vertex
of degree three in G is feasible. The existence of such a vertex was verified by Berg
and the second named author [1] in their recent solution to Connelly’s conjecture.
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Section 2. Rigid graphs and the rigidity matroid 4

In this paper we shall show that every 3-connected 2-rigid graph can be obtained
from K4 by edge additions and 1-extensions by extending the methods in [1]. We
show that every 3-connected 2-rigid graph G on at least five vertices either contains
an edge e such that G − e is 3-connected and 2-rigid, or a vertex v of degree three
such that splitting off v in G results in a graph which is 3-connected and 2-rigid.

The structure of the paper is as follows. In Section 2 we review elementary results
on rigidity: we define the rigidity matroid of a graph and use it to give combinatorial
definitions for when a graph is rigid, 2-rigid or an M -circuit. In Section 3 we char-
acterize M -connected graphs (graphs with a connected rigidity matroid). Section 4
describes and extends lemmas from [1] on splitting off in M -circuits. In Section 5,
we use the concept of an ear decomposition of a matroid to extend the splitting off
theorem of [1] from M -circuits to M -connected graphs. We use this in Section 6 to
obtain our above mentioned recursive construction for 3-connected 2-rigid graphs and
hence solve Hendrickson’s conjecture.

2 Rigid graphs and the rigidity matroid

In this section we prove a number of preliminary lemmas and basic results, most
of which are known. Our goal is to make the paper self-contained and to give a
unified picture of these frequently used statements. Our proofs are based on Laman’s
theorem and use only graph theoretical arguments. Some of these results can be found
in [6, 12, 16, 18, 19].

Let G = (V,E) be a graph. Let S be a non-empty subset of E, and H be the
subgraph of G induced by edge set S. We say that S is independent if

iH(X) ≤ 2|X| − 3 for all X ⊆ V (H) with |X| ≥ 2. (2)

The empty set is also defined to be independent. The rigidity matroidM(G) = (E, I)
is defined on the edge set of G by

I = {S ⊆ E : S is independent in G}.

To see thatM(G) is indeed a matroid, we shall verify that the following three matroid
axioms are satisfied. (For basic matroid definitions not given here the reader may
consult the book [13].)

(M1) ∅ ∈ I,

(M2) if Y ⊂ X ∈ I then Y ∈ I,

(M3) for every E ′ ⊆ E the maximal independent subsets of E ′ have the same cardi-
nality.

Let G = (V,E) be a graph. For X,Y, Z ⊂ V , let E(X) be the set of edges of G[X],
d(X, Y ) = |E(X ∪ Y )− (E(X)∪E(Y ))|, and d(X, Y, Z) = |E(X ∪ Y ∪Z)− (E(X)∪
E(Y ) ∪ E(Z))|. We define the degree of X by d(X) = d(X,V −X). The degree of a
vertex v is simply denoted by d(v). We shall need the following equalities, which are
easy to check by counting the contribution of an edge to each of their two sides.
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Section 2. Rigid graphs and the rigidity matroid 5

Lemma 2.1. Let G be a graph and X,Y ⊆ V (G). Then

i(X) + i(Y ) + d(X, Y ) = i(X ∪ Y ) + i(X ∩ Y ). (3)

Lemma 2.2. Let G be a graph and X,Y, Z ⊆ V (G). Then

i(X) + i(Y ) + i(Z) + d(X,Y, Z) = i(X ∪ Y ∪ Z) + i(X ∩ Y ) + i(X ∩ Z) +

i(Y ∩ Z)− i(X ∩ Y ∩ Z).

We say that the graph H = (V, F ) is M -independent if F is independent inM(H).
We call a set X ⊆ V critical if i(X) = 2|X| − 3 holds.

Lemma 2.3. Let H = (V, F ) be M-independent and let X, Y ⊂ V be critical sets in
H with |X ∩ Y | ≥ 2. Then X ∩ Y and X ∪ Y are also critical, and d(X, Y ) = 0.

Proof: Since H is M -independent, (2) holds. By (3) we have
2|X| − 3 + 2|Y | − 3 = i(X) + i(Y ) = i(X ∩ Y ) + i(X ∪ Y )− d(X, Y ) ≤
2|X ∩ Y | − 3 + 2|X ∪ Y | − 3 − d(X, Y ) = 2|X| − 3 + 2|Y | − 3 − d(X,Y ). Thus
d(X, Y ) = 0 and equality holds everywhere. Therefore X ∩ Y and X ∪ Y are also
critical. •

Lemma 2.4. Let G = (V,E ′) be a graph with |E ′| ≥ 1 and let F ⊆ E ′ be a maximal
independent subset of E ′. Then

|F | = min{
t∑

i=1

(2|Xi| − 3)} (4)

where the minimum is taken over all collections of subsets {X1, X2, . . . , Xt} of V (G)
such that {E(X1), E(X2), . . . , E(Xt)} partitions E ′.

Proof: Since F is independent, we have |F ∩ E(Xi)| ≤ 2|Xi| − 3 for all 1 ≤ i ≤ t.
Thus |F | ≤

∑t
i=1(2|Xi| − 3) for any collection of subsets {X1, X2, ..., Xt} satisfying

the hypothesis of the lemma.
To see that equality can be attained, let H be the subgraph of G induced by

F . Consider the maximal critical sets X1, X2, ..., Xt in H. By Lemma 2.3 we have
|Xi ∩Xj| ≤ 1 for all 1 ≤ i < j ≤ t. Since every single edge of F induces a critical set,
it follows that {EH(X1), EH(X2), ..., EH(Xt)} is a partition of F . Thus

|F | =
t∑
1

|EH(Xi)| =
t∑
1

(2|Xi| − 3).

To complete the proof we show that {EG(X1), EG(X2), ..., EG(Xt)} is a partition of
E ′. Choose uv ∈ E ′ − F . Since F is a maximal independent subset of E ′, F + uv is
dependent. Thus there exists a set X ⊆ V such that u, v ∈ X and iH(X) = 2|X| − 3.
Hence X is a critical set in H. This implies that X ⊆ Xi and hence uv ∈ EG(Xi) for
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2.1 Minimally rigid graphs 6

some 1 ≤ i ≤ t. •

It follows from the definition of independence thatM(G) satisfies axioms (M1) and
(M2). Lemma 2.4 implies thatM(G) also satisfies (M3). It also determines the rank
function of M(G), which we shall denote by rG or simply by r.

Corollary 2.5. First Let G = (V,E) be a graph. Then M(G) is a matroid, in which
the rank of a non-empty set E ′ ⊆ E of edges is given by

r(E ′) = min{
t∑

i=1

(2|Xi)| − 3)}

where the minimum is taken over all collections of subsets {X1, X2, . . . , Xt} of G such
that {E(X1), E(X2), . . . , E(Xt)} partitions E ′.

We say that a graph G = (V,E) is rigid if r(E) = 2|V |−3 in (M)(G). The graph G
is minimally rigid if it is rigid and |E| = 2|V | − 3. Thus, if G is rigid and H = (V,E ′)
is a spanning subgraph of G, then H is minimally rigid if and only if E ′ is a base in
M(G). Theorem 1.2 ensures that these definitions agree with the intuitive definitions
for rigidity given in Section 1.

A k-separation of a graph H = (V,E) is a pair (H1, H2) of edge-disjoint subgraphs
of G each with at least k+1 vertices such that H = H1∪H2 and |V (H1)∩V (H2)| = k.
The graph H is said to be k-connected if it has at least k + 1 vertices and has no j-
separation for all 0 ≤ j ≤ k − 1. If (H1, H2) is a k-separation of H, then we say
that V (H1) ∩ V (H2) is a k-separator of H. For X ⊆ V let N(X) denote the set of
neighbours of X (that is, N(X) := {v ∈ V −X : uv ∈ E for some u ∈ X}).

2.1 Minimally rigid graphs

We first investigate the connectivity properties of minimally rigid graphs.

Lemma 2.6. Let G = (V,E) be minimally rigid with |V | ≥ 3. Then
(a) G is 2-connected.
(b) for every ∅ 6= X ⊂ V we have d(X) ≥ 2 and if d(X) = 2 holds then either |X| = 1
or |V −X| = 1,

Proof: Suppose that for some v ∈ V the graph G − v is disconnected and let
A ∪ B be a partition of V − v with d(A,B) = 0. Then (2) gives |E| = 2|V | − 3 =
i(A+ v) + i(B+ v) ≤ 2(|A|+ 1)− 3 + 2(|B|+ 1)− 3 = 2(|A|+ |B|+ 1)− 4 = 2|V |− 4,
a contradiction. This proves (a).

Using (a), we have d(X) ≥ 2 for every ∅ 6= X ⊂ V . Suppose |X|, |V −X| ≥ 2. By
(2) we obtain |E| = i(X) + i(V − X) + d(X) ≤ 2|X| − 3 + 2|V − X| − 3 + d(X) =
2|V | − 6 + d(X) = |E| − 3 + d(X). This implies d(X) ≥ 3 and proves (b). •

Let v be a vertex in a graph G with d(v) = 3 and N(v) = {u,w, z}. Recall that the
operation splitting off means deleting v (and the edges incident to v) and adding a

EGRES Technical Report No. 2002-12



2.1 Minimally rigid graphs 7

new edge, say uw, connecting two non-adjacent vertices of N(v). The resulting graph
is denoted by Guw

v and we say that the splitting is made on the pair uv, wv. Note that
v can be split off in at most three different ways.

Let G = (V,E) be minimally rigid and let v be a vertex with d(v) = 3. Splitting
off v on the pair uv, wv is said to be suitable if Guw

v is minimally rigid. We also call a
vertex v suitable if there is an suitable splitting at v. We shall show that every vertex
of degree three in a minimally rigid graph is suitable.

Lemma 2.7. Let G = (V,E) be minimally rigid and let X, Y, Z ⊂ V be critical sets
in G with |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1 and X ∩ Y ∩ Z = ∅. Then X ∪ Y ∪ Z is
critical, and d(X,Y, Z) = 0.

Proof: Since G is minimally rigid and our sets are critical, Lemma 2.2 gives
2|X| − 3 + 2|Y | − 3 + 2|Z| − 3 + d(X, Y, Z) = i(X) + i(Y ) + i(Z) + d(X, Y, Z) ≤
i(X∪Y ∪Z) ≤ 2(|X∪Y ∪Z|)−3 = 2(|X|+|Y |+|Z|−3)−3 = 2|X|−3+2|Y |−3+2|Z|−3.
Hence d(X, Y, Z) = 0 and equality holds everywhere. Thus X ∪ Y ∪ Z is critical. •

Lemma 2.8. Let v be a vertex in an minimally rigid graph G = (V,E).
(a) If d(v) = 2 then G− v is minimally rigid.
(b) If d(v) = 3 then v is suitable.

Proof: Part (a) follows easily from (2) and from the definition of minimally rigid
graphs.

To prove (b) let N(v) = {u,w, z}. It is easy to see that splitting off v on the
pair uv, wv is not suitable if and only if there exists a critical set X ⊂ V with
u,w ∈ X and v, z /∈ X. Also observe that no critical set Z ⊆ V − v can satisfy
d(v, Z) ≥ 3, since otherwise E(G[Z ∪ {v}]) is not independent in G, contradicting
the fact that G is minimally rigid. Thus if v is not suitable then there exist
maximal critical sets Xuw, Xuz, Xwz ⊂ V −v each containing precisely two neighbours
({u,w}, {u, z}, {wz}, resp.) of v. By Lemma 2.3 and the maximality of these
sets we must have |Xuw ∩ Xuz| = |Xuw ∩ Xwz| = |Xuz ∩ Xwz| = 1. Thus, by
Lemma 2.7 the set Y := Xuw ∪Xuz ∪Xwz is also critical. Since N(v) ⊆ Y , we have
d(v, Y ) ≥ 3. This is impossible by our previous observation. Therefore v is suitable. •

The minimally rigid graph K4 − e shows that among the three possible splittings
at a vertex of degree three there may be only one which is suitable.

We now define the reverse operations of vertex deletion and vertex splitting used
in Lemma 2.8. The operation 0-extension adds a new vertex v and two edges vu, vw
with u 6= w. The operation 1-extension subdivides an edge uw by a new vertex v
and adds a new edge vz for some z 6= u,w. An extension is either a 0-extension or a
1-extension. The next lemma follows easily from (2).

Lemma 2.9. Let G be minimally rigid and let G′ be obtained from G by an extension.
Then G′ is minimally rigid.
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2.1 Minimally rigid graphs 8

Theorem 2.10. Let G = (V,E) be minimally rigid and let G′ = (V ′, E ′) be a mini-
mally rigid subgraph of G. Then G can be obtained from G′ by a sequence of extensions.

Proof: We shall prove that G′ can be obtained from G by a sequence of vertex
splittings and deletions of vertices (of degree two). The theorem will then follow since
these are the inverse operations of extensions.

The proof is by induction on |V − V ′|. Since G′ is minimally rigid, it must be an
induced subgraph of G. Thus the theorem holds trivially when |V − V ′| = 0. Now
suppose that Y = V − V ′ 6= ∅. Since G′ and G are minimally rigid, it is easy to see
that |E −E ′| = 2|Y | holds. Therefore, if |Y | = 1, then we must have d(v) = 2 for the
unique vertex v ∈ Y . Hence, by Lemma 2.8(a), G − v is a minimally rigid subgraph
of G which contains G′ and has |V (G− v)− V ′| < |V − V ′|, and the theorem follows
by induction. Thus we may assume that |Y | ≥ 2.

Claim 2.11. If |Y | ≥ 2 then
∑

v∈Y d(v) ≤ 4|Y | − 3.

Proof: Since |V ′| ≥ 2 and |V − V ′| ≥ 2, we can apply Lemma 2.6(b) to deduce that
d(Y ) ≥ 3. Since i(Y ) + d(Y ) = |E − E ′| = 2|Y |, we obtain∑

v∈Y

d(v) = 2i(Y ) + d(Y ) = 4|Y | − d(Y ) ≤ 4|Y | − 3.

•

It follows from Claim 2.11 (and from the fact that the minimum degree in G is at
least two) that there is a vertex v ∈ Y with 2 ≤ d(v) ≤ 3. Now Lemma 2.8 implies
that either G− v or, for some edges vu, vw, Guw

v is a minimally rigid proper subgraph
of G which contains G′. As above, the theorem follows by induction. •

By choosing G′ to be an arbitrary edge of G we obtain the following constructive
characterization of minimally rigid graphs (called the Henneberg or Henneberg-Laman
construction, c.f. [10, 11]).

Corollary 2.12. G = (V,E) is minimally rigid if and only if G can be obtained from
K2 by a sequence of extensions.

Theorem 2.13. Let G1 = (V1, E1) and G2 = (V2, E2) be two minimally rigid graphs
with |V1 ∩ V2| ≥ 2. Then G1 ∪ G2 is rigid. Moreover, if G1 ∩ G2 is minimally rigid
then G1 ∪G2 is minimally rigid as well.

Proof: Let F ′ be a maximal independent set inM(G1∩G2). Let Kt be the complete
graph with vertex set V (G1 ∩G2) and F be a basis of M(Kt) containing F ′. Let H
be a minimally rigid spanning subgraph of G2 + (F − F ′) which contains F . Such an
H exists, since G2, and hence G2 + (F − F ′), is rigid. (To see that F and H exist
we use the fact that any independent set in a matroid can be extended to a basis.)
Now Theorem 2.10 implies that H can be obtained by a sequence of extensions from
(V1∩V2, F ). The same sequence of extensions, applied to G1, yields a minimally rigid
spanning subgraph of G1 ∪G2 by Lemma 2.9. This proves that G1 ∪G2 is rigid.
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2.2 M -circuits and 2-rigid graphs 9

The second assertion follows from the fact that if G1 ∩ G2 is minimally rigid then
F = F ′ and H = G2. •

Corollary 2.14. Let G1 = (V1, E1) and G2 = (V2, E2) be two rigid graphs with |V1 ∩
V2| ≥ 2. Then G1 ∪G2 is rigid.

Let G = (V,E) be a graph. Since every edge of G induces a rigid subgraph of
G, Corollary 2.14 implies that the maximal rigid subgraphs R1, R2, ..., Rt (called the
rigid components of G) of G are pairwise edge-disjoint and E(R1), E(R2), ..., E(Rt)
is a partition of E. Thus a graph is rigid if and only if it has precisely one rigid
component.

2.2 M-circuits and 2-rigid graphs

Given a graph G = (V,E), a subgraph H = (W,C) is said to be an M-circuit in
G if C is a circuit (i.e. a minimal dependent set) in M(G). In particular, G is an
M-circuit if E is a circuit in M(G). For example, K4, K3,3 plus an edge, and K3,4

are all M -circuits. Using (2) we may deduce:

Lemma 2.15. Let G = (V,E) be a graph. The following statements are equivalent.
(a) G is an M-circuit.
(b) |E| = 2|V | − 2 and G− e is minimally rigid for all e ∈ E.
(c) |E| = 2|V | − 2 and i(X) ≤ 2|X| − 3 for all X ⊆ V with 2 ≤ |X| ≤ |V | − 1.

We shall need the following elementary properties of M -circuits which can be de-
rived in a similar way to Lemma 2.6.

Lemma 2.16. [1, Lemma 2.4] Let H = (V,E) be an M-circuit.
(a) For every ∅ 6= X ⊂ V we have d(X) ≥ 3 and if d(X) = 3 holds then either |X| = 1
or |V −X| = 1,
(b) If X ⊂ V is critical with |X| ≥ 3 then H[X] is 2-connected.

Let H = (V,E) be a 2-connected graph and suppose that (H1, H2) is a 2-separation
of G with V (H1) ∩ V (H2) = {a, b}. For 1 ≤ i ≤ 2, let H ′i = Hi + ab if ab 6∈ E(Hi)
and otherwise put H ′i = Hi. We say that H1, H2 are the cleavage graphs obtained by
cleaving G along {a, b}. The inverse operation of cleaving is 2-sum: given two graphs
H1 = (V1, E1) and H2 = (V2, E2) with V1∩V2 = ∅ and two designated edges u1v1 ∈ E1

and u2v2 ∈ E2, the 2-sum of H1 and H2 (along the edge pair u1v1, u2v2), denoted by
H1⊕2H2, is the graph obtained from H1− u1v1 and H2− u2v2 by identifying u1 with
u2 and v1 with v2. We shall use the following results on 2-sums and 2-separations.

Lemma 2.17. [1, Lemma 4.1] Let G1 = (V1, E1) and G2 = (V2, E2) be M-circuits
and let u1v1 ∈ E1 and u2v2 ∈ E2. Then the 2-sum G1⊕2 G2 along the edge pair u1v1,
u2v2 is an M-circuit.
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Section 3. Graphs with a connected rigidity matroid 10

Lemma 2.18. [1, Lemma 4.2] Let G = (V,E) be an M-circuit and let G′ and G′′ be
the graphs obtained from G by cleaving G along a 2-separator. Then G′ and G′′ are
both M-circuits.

Recall that a graph G is 2-rigid if G has at least two edges and G − e is rigid for
all e ∈ E. M -circuits are examples of (minimally) 2-rigid graphs. Note also that a
graph G is 2-rigid if and only if G is rigid and each edge of G belongs to a circuit in
M(G) i.e. an M -circuit of G.

It follows from Theorem 2.13 that any two maximal 2-rigid subgraphs of a graph
G = (V,E) can have at most one vertex in common, and hence are edge-disjoint.
Defining a 2-rigid component of G to be either a maximal 2-rigid subgraph of G, or
a subgraph induced by an edge which belongs to no M -circuit of G, we deduce that
the 2-rigid components of G partition E. Since each 2-rigid component is rigid, this
partition is a refinement of the partition of E given by the rigid components of G.

We shall need two elementary lemmas on 2-rigidity.

Lemma 2.19. If G is 2-rigid and G′ is obtained from G by an edge addition or a
1-extension, then G′ is 2-rigid.

Proof: This follows from the definition of 2-rigidity and the facts that edge additions,
0-extensions and 1-extensions preserve rigidity. •

Lemma 2.20. If G is 2-rigid and {u, v} is a 2-separator in G then d(u), d(v) ≥ 4.

Proof: Suppose d(u) ≤ 3. Then we can choose an edge e incident to u such that
G− e is not 2-connected. By Lemma 2.6(a), G− e is not rigid. This contradicts the
2-rigidity of G. •

3 Graphs with a connected rigidity matroid

Given a matroid M = (E, I), we define a relation on E by saying that e, f ∈ E are
related if e = f or if there is a circuit C in M with e, f ∈ C. It is well-known that
this is an equivalence relation. The equivalence classes are called the components of
M. If M has at least two elements and only one component then M is said to be
connected. If M has components E1, E2, . . . , Et and Mi is the matroid restriction of
M onto Ei then M =M1 ⊕M2 . . .⊕Mt is the direct sum of the Mi’s.

We say that a graph G = (V,E) is M-connected ifM(G) is connected. For example,
K3,m is M -connected for all m ≥ 4. The M-components of G are the subgraphs
of G induced by the components of M(G). Since the M -circuits of G are 2-rigid,
every M -circuit of G is contained in one of the 2-rigid components of G. Thus the
partition of E(G) given by the M -components is a refinement of the partition given
by the 2-rigid components and hence a further refinement of the partition given by
the rigid components. Furthermore,M(G) can be expressed as the direct sum of the
rigidity matroids of the rigid components of G, the 2-rigid components of G, or the
M -components of G.
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Lemma 3.1. Suppose that G is M-connected. Then G is 2-rigid.

Proof: G is rigid, since otherwise G has at least two rigid components and hence at
least two M -components. Since M(G) is connected, every edge e is contained in a
circuit of M(G). Thus G is 2-rigid. •

The main result of this section characterizes which 2-rigid graphs are M -connected.
We say that a graph G is nearly 3-connected if G can be made 3-connected by adding
at most one new edge.

Theorem 3.2. Suppose that G is nearly 3-connected and 2-rigid. Then G is M-
connected.

Proof: For a contradiction suppose that G is not M -connected and let H1, H2,...,Hq

be the M -components of G. Let Si = V (Hi) − ∪j 6=iV (Hj) denote the set of vertices
belonging to no other M -component than Hi, and let Pi = V (Hi)− Si for 1 ≤ i ≤ q.
Let ni = |V (Hi)|, si = |Si|, pi = |Pi|. Clearly, ni = si+pi and |V | =

∑q
i=1 si+|∪q

i=1Pi|.
Moreover, we have

∑q
i=1 pi ≥ 2| ∪q

i=1 Pi|. Since every edge of G is in some M -circuit,
and every M -circuit has at least four vertices, we have that ni ≥ 4 for 1 ≤ i ≤ q.
Furthermore, since G is nearly 3-connected, pi ≥ 2 for all 1 ≤ i ≤ q, and pi ≥ 3 for
all but at most two M -components.

Let us choose a basis Bi in each rigidity matroidM(Hi). Using the above inequal-
ities we have

| ∪q
i=1 Bi| =

q∑
i=1

|Bi| =
q∑

i=1

(2ni − 3) = 2

q∑
i=1

ni − 3q ≥

(2

q∑
i=1

si +

q∑
i=1

pi) +

q∑
i=1

pi − 3q ≥ 2|V |+ 3q − 2− 3q = 2|V | − 2.

Since r(M(G)) = 2|V | − 3, this implies that ∪q
i=1Bi contains a circuit, contradicting

the fact that the Bi’s are bases for the M(Hi)’s and M(G) = ⊕q
i=1M(Hi). •

A graph G is birigid if G − v is rigid for all v ∈ V (G). It was shown by Servatius
[15, Theorem 2.2] (using a similar argument to our proof of Theorem 3.2) that every
birigid graph is M -connected. Theorem 3.2 extends this result, since birigid graphs
are clearly 3-connected and 2-rigid. The wheels (on at least 5 vertices) are 3-connected
2-rigid graphs which are not birigid. This shows that the extension is proper.

We need the following results to complete our characterization of M -connected
graphs. The first two lemmas follow from Lemmas 2.17 and 2.18, respectively.

Lemma 3.3. Suppose G1 and G2 are M-connected. Then G1⊕2 G2 is M-connected.

Lemma 3.4. Suppose G1 and G2 are obtained from G by cleaving G along a 2-
separator. If G is M-connected then G1 and G2 are also M-connected.
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Let G = (V,E) be a 2-connected graph, c ≥ 3 be an integer, and let (X1, X2, ..., Xc)
be cyclically ordered subsets of V satisfying (by taking Xc+1 = X1):

(i) |Xi ∩Xj| = 1, for |i− j| = 1, and Xi ∩Xj = ∅ for |i− j| ≥ 2, and

(ii) {E(X1), E(X2), ..., E(Xc)} is a partition of E.

Then we say that (X1, X2, ..., Xc) is a polygon (of size c) in G. It is easy to see that
if u and v are distinct vertices with {u} = Xi−1 ∩Xi and {v} = Xj ∩Xj+1, for some
1 ≤ i, j ≤ c, then either {u, v} is a 2-separator in G or i = j and Xi = {u, v}.

Lemma 3.5. Suppose that G = (V,E) has a polygon of size c. Then
(a) G is not M-connected.
(b) If c ≥ 4 then G is not rigid.

Proof: Let X1, X2, ..., Xc be a polygon and let Ei = E(Xi) for 1 ≤ i ≤ c. Note that
E1, E2, ..., Ec is a partition of E. Using the polygon structure we obtain

r(E) ≤
c∑

i=1

r(Ei) ≤
c∑

i=1

(2|Xi| − 3) = 2|V |+ 2c− 3c = 2|V | − c. (5)

Thus for c ≥ 4 we have r(E) ≤ 2|V | − 4, and hence G is not rigid. This proves (b).
To prove (a) suppose that G is M -connected. Then G is rigid and r(E) = 2|V | − 3.
By (b) this yields c = 3. Moreover, equality must hold everywhere in (5). Thus
r(E) =

∑c
i=1 r(Ei). Thus M(G) is the direct sum of its restrictions to the sets Ei.

This contradicts the fact that M(G) is a connected matroid. •

We say that a 2-separator {x1, x2} crosses another 2-separator {y1, y2} in a graph
G, if x1 and x2 are in different components of G − {y1, y2}. It is easy to see that if
{x1, x2} crosses {y1, y2} then {y1, y2} crosses {x1, x2}. Thus, we can say that these
2-separators are crossing. It is also easy to see that crossing 2-separators induce a
polygon of size four in G. Thus Lemma 3.5(a) has the following corollary:

Lemma 3.6. Suppose that G is rigid (and hence 2-connected). Then there are no
crossing 2-separators in G.

Let G = (V,E) be a 2-connected graph with no crossing 2-separators. The cleav-
age units of G are the graphs obtained by recursively cleaving G along each of its
2-separators. Since G has no crossing 2-separators this sequence of operations is
uniquely defined and results in a unique set of graphs each of which have no 2-
separators. Thus each cleavage unit of G is either 3-connected or else a complete
graph on three vertices. The stronger hypothesis that G has no polygons will imply
that each cleavage unit of G is a 3-connected graph. In this case, an equivalent def-
inition for the cleavage units is to first construct the augmented graph Ĝ from G by
adding all edges uv for which {u, v} is a 2-separator of G and uv 6∈ E, and then take
the cleavage units to be the maximal 3-connected subgraphs of Ĝ. (These definitions
are a special case of a general decomposition theory for 2-connected graphs due to
Tutte [17].)
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Theorem 3.7. A graph G is M-connected if and only if it is 2-connected, has no
polygon, and each of its cleavage units is 2-rigid.

Proof: If G is M -connected, then G is rigid and hence 2-connected by Lemma
2.6(a), G has no polygons by Lemma 3.6, each cleavage unit of G is M -connected
by Lemma 3.4, and hence each cleavage unit is 2-rigid by Lemma 3.1. On the other
hand, if G is 2-connected, has no polygons and each cleavage unit is 2-rigid, then each
cleavage unit is M -connected by Theorem 3.2, and G is M -connected by Lemma 3.3. •

The weaker hypothesis that G is 2-connected, has no polygons, and is 2-rigid is not
sufficient to imply that G is M -connected. This can be seen by considering the graph
G obtained from the triangular prism H = K3×K2 by replacing each edge vivj of H
by a complete graph with vertex set {vi, vj, v

′
i, v
′
j}, where v′i, v

′
j 6∈ V (H). The graph G

is 2-rigid since it is rigid and every edge belongs to an M -circuit (a complete graph on
four vertices). To see that G is not M -connected we first note that H is not 2-rigid.
This follows since there exists X ⊂ V (H) with |X| = 3 = dH(X). Choosing an edge
e in H from X to V (H)−X, we may use Lemma 2.6(b) to deduce that H − e is not
rigid. We may now deduce that G is not M -connected since H is a cleavage unit of
G, and every cleavage unit of an M -connected graph is M -connected by Lemma 3.4

We close this section by obtaining two further results on M -connectivity which we
will need later.

Lemma 3.8. Let G = (V,E) be a 2-connected graph and {u, v} be a 2-separator of G
such that uv ∈ E. Then G is M-connected if and only if H = G−uv is M-connected.

Proof: This follows from Theorem 3.7 since G is 2-connected if and only if H is
2-connected, G has no polygons if and only if H has no polygons, and Ĝ = Ĥ so the
cleavage units of G and H are identical. •

Lemma 3.9. If G is M-connected and G′ is obtained from G by an edge addition or
a 1-extension, then G′ is M-connected.

Proof: Note that since G is M -connected, G has no polygons by Lemma 3.6 and each
cleavage unit of G is M -connected by Lemma 3.4. We proceed by induction on the
number of cleavage units of G. Suppose G is nearly 3-connected. Then G′ is nearly
3-connected. Since G is M -connected, G is 2-rigid by Lemma 3.1. Hence G′ is 2-rigid
by Lemma 2.19. Thus G′ is M -connected by Theorem 3.2.

Hence we may suppose that G is not nearly 3-connected. Then we can find
a 2-separation (G1, G2) in G such that both endvertices of e belong to G1 when
G′ = G+e, and such that all neighbours of v belong to G1 when G′ is a 1-extension of
G by v. Let H1, H2 be the cleavage graphs of G corresponding to G1, G2, respectively.
Then H1, H2 are M -connected by Lemma 3.4. Let H ′1 be obtained from H1 in the
same way that G′ was obtained from G. By induction H ′1 is M -connected. Thus
H ′ = H ′1 ⊕2 H2, is M -connected by Lemma 3.3. If H ′ = G′ then we are done. If not,
then G′ = H ′+xy, where {x, y} = V (G1)∩V (G2), and we are done by Lemma 3.8. •
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4 Admissible splittings in M-circuits

Let G = (V,E) be a graph and let V3 = {v ∈ V : d(v) = 3}. We will refer to vertices
in V3(G) as nodes of G and to the subgraph G[V3] as the node-subgraph of G. A node
of G with degree at most one (exactly two, exactly three) in the node-subgraph of G
is called a leaf node (series node, branching node, respectively). A wheel Wn = (V,E)
is a graph on n ≥ 4 vertices which has a vertex z which is adjacent to all the other
vertices and for which Wn[V − z] is a cycle. Thus the node-subgraph of a wheel Wn

with n ≥ 5 is a cycle. It was shown in [1, Lemma 2.1] that if G is an M -circuit then
either G is a wheel or G[V3] is a forest. The proof can be extended to M -connected
graphs to give:

Lemma 4.1. Let G be M-connected. If G is not a wheel, then the nodes of G induce
a forest in G.

We also need two results on M -circcuits from [1]. The proof of the first lemma is
similar to that of Lemma 2.3.

Lemma 4.2. [1, Lemma 2.3] Let G = (V,E) be an M-circuit and let X,Y ⊂ V be
critical sets with |X ∩ Y | ≥ 2 and |X ∪ Y | ≤ |V | − 1. Then X ∩ Y and X ∪ Y are
both critical, and d(X,Y ) = 0.

Lemma 4.3. [1, Lemma 2.5] Let H = (V,E) be an M-circuit and let X ⊂ V be a
critical set. Then V − X contains at least one node. Furthermore, if |V − X| ≥ 2,
then V −X contains at least two nodes.

We shall say that splitting off a node v in an M -connected graph is admissible if it
preserves M -connectivity, that v is an admissible node if it has an admissible splitting,
and otherwise that v is non-admissible. Note that an admissible splitting off in an
M -circuit results in an M -connected graph with |E| = 2|V | − 2, and hence results in
another M -circuit. The following result follows easily from Lemma 2.15.

Lemma 4.4. [1, Lemma 3.1] Let H = (V,E) be an M-circuit and v be a node in G
with N(v) = {u,w, z}. Then splitting off v on the pair uv, wv is not admissible if and
only if there is a critical set X ⊂ V with u,w ∈ X and v, z /∈ X.

If v is a node in a graph G with N(v) = {u,w, z} and X is a critical set with
u,w ∈ X and v, z /∈ X then we call X a v-critical set on {u,w}, or simply a v-critical
set. If X is a v-critical set on {u,w} for some node v with N(v) = {u,w, z}, and
d(z) ≥ 4, then X is said to be node-critical.

Our next lemma extends [1, Lemma 3.2].

Lemma 4.5. Let H be an M-circuit, |V (H)| ≥ 5, and v be a non-admissible leaf node
in H with N(v) = {x, y, z}. Suppose that no two neighbours of v are a 2-separator in
H.
(a) If z is a node of H then for any pair X1, X2 of v-critical sets on {y, z}, and {x, z},
respectively, we have |X1 ∩X2| ≥ 2 and X1 ∪X2 = V (H)− v.
(b) If v is not adjacent to a node then there exist two v-critical sets X1, X2 with
|X1 ∩X2| ≥ 2, X1 ∪X2 = V (H)− v.
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Proof: We first consider the case when z is a node of H. Since v is non-admissible,
Lemma 4.4 implies that There exist two v-critical sets, X1 on {y, z} and X2 on
{x, z}. If the edges xz and yz are both present in E(H), then {x, y} is a 2-separator,
contradicting an hypothesis of the lemma. Thus we may assume, without loss of
generality, that yz /∈ E. Then for the v-critical set X1 on y, z we must have |X1| ≥ 3.
By Lemma 2.16(b) H[X1] is 2-connected, and hence z has two neighbours in X1. If
z has no neighbours in X2 then xz /∈ E(X2), |X2| ≥ 3, and z is an isolated vertex
in H[X2]. This would contradict Lemma 2.16(b). Hence z has a neighbour in X2.
Since z is a node and has two neighbours in X1, this implies that |X1 ∩X2| ≥ 2. By
Lemma 4.2 this gives that X1 ∪X2 is also critical. Since d(v,X1 ∪X2) ≥ 3, Lemma
2.15 implies that X1 ∪X2 = V (H)− v. Thus (a) holds.

Now suppose that v is not adjacent to a node. Since v is non-admissible,
Lemma 4.4 implies that there exist three v-critical sets X, Y, Z on {y, z}, {x, z}
and {x, y}, respectively. Suppose that no two of these sets intersect each other in
at least two vertices. Then we also have X ∩ Y ∩ Z = ∅. Lemma 2.2 implies that
X ∪ Y ∪ Z is critical and d(X, Y, Z) = 0. Since d(v,X ∪ Y ∪ Z) = 3, we deduce
that X ∪ Y ∪ Z = V − v (otherwise (X ∪ Y ∪ Z) + v violates Lemma 2.15). Since
|V | ≥ 5, at least one of the three critical sets X,Y, Z (say, X) satisfies |X| ≥ 3.
But we have d(X,Y, Z) = 0, and hence y, z is a 2-separator in H, contradicting an
hypothesis of the lemma. This contradiction shows that we can choose two sets
X1, X2 ∈ {X,Y, Z} with |X1 ∩X2| ≥ 2. Then X1 ∪X2 is critical by Lemma 4.2 and
so X1∪X2 = V −v follows, using Lemma 2.15 and d(v,X∪Y ) = 3. Thus (b) holds. •

The next lemma extends [1, Lemma 3.3].

Lemma 4.6. Let H = (V,E) be an M-circuit which is not a wheel, and let v be a
node. Let N(v) = {x, y, z} and let X be a v-critical set on x, y with d(z) ≥ 4 and
|X| ≥ 3. Suppose that either
(a) there is a non-admissible series node u ∈ V −X − v with exactly one neighbour
w in X, and w is a node, or
(b) there is a non-admissible leaf node t ∈ V −X − v.
Then either there is a 2-separation (H1, H2) of H with X ⊆ V (H1) or there is a
node-critical set X∗ with X ⊂ X∗.

Proof: Suppose first that (a) occurs and let N(u) = {w, p, q}. By our assumption
N(u)∩X = {w} and d(w) = 3. Since u is a series node, we can assume that d(p) = 3
and d(q) ≥ 4. Since u is non-admissible, there exists a u-critical set Y on {w, p} by
Lemma 4.4. Now H is not a wheel, and hence H[V3] contains no cycles by Lemma
4.1. Thus pw /∈ E and hence |Y | ≥ 3. This implies, by Lemma 2.6(a), that G[Y ] is
2-connected, and hence Y contains two neighbours of w. Since |X| ≥ 3, Lemma 2.6(a)
implies that G[X] is 2-connected, and hence at least one of the neighbours of w in Y
must be in X. Thus |X ∩ Y | ≥ 2. Let X∗ = X ∪ Y . We have X∗ ⊆ V − u − q, and
Lemma 4.2 implies that X∗ is a u-critical set on {w, p}. Since d(q) ≥ 4 and p /∈ X,
the set X∗ is a node-critical set which properly contains X.

We next suppose that (b) occurs. We must have |N(t)∩X| ≤ 2, since |N(t)∩X| = 3
would imply that X + t violates Lemma 2.15(c). If |N(t) ∩X| = 2 then X + t is also
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critical and by choosing X∗ = X + t the lemma follows. Thus we may assume that
|N(t) ∩X| ≤ 1.

Since t is a non-admissible leaf node, Lemma 4.5 implies that either there is a 2-
separator consisting of two neighbours of t or there exist two t-critical sets Y1 and Y2

with Y1 ∪ Y2 = V − t, |Y1 ∩ Y2| ≥ 2, and so that if t has a neighbour r which is a
node then r ∈ Y1 ∩ Y2. In the former case we are done (since G[X] is 2-connected by
Lemma 2.6(a) and hence X is contained in one side of the corresponding 2-separation).
Suppose that the latter case holds. Note that Y1 and Y2 are node-critical since t is
a leaf node and |Y1|, |Y2| ≥ 3. Since Y1 ∪ Y2 = V − t, t /∈ X, and |X| ≥ 3, we
have |X ∩ Y1| ≥ 2 or |X ∩ Y2| ≥ 2. Let us assume, without loss of generality, that
|X ∩ Y1| ≥ 2 holds. By Lemma 4.2, X ∪ Y1 is a critical set. If N(t) ∩X ⊆ Y1, then
the lemma follows by choosing X∗ = X ∪ Y1. (The set X∗ is t-critical and the unique
neighbour of t in V −X∗ has degree four in H.)

Thus we may assume that N(t) ∩ X = {s} and s 6∈ Y1 holds. This implies
that d(s) ≥ 4, since if d(s) = 3 then we have s ∈ Y1 ∩ Y2 as noted above. Since
Y1 ∪ Y2 = V − t, we have s ∈ Y2. Hence if |X ∩ Y2| ≥ 2 then we are done, as above,
by choosing the t-critical set X∗ = X ∪ Y2. Thus, we may suppose that |X ∩ Y2| = 1.
Since d(t,X ∪ Y1) = 3, and X ∪ Y1 is critical, Lemma 2.15 implies X ∪ Y1 = V − t.
Since Y1 ∪ Y2 = V − t, we have (X − s) ⊆ Y1. Thus V − Y1 = {s, t}. This contradicts
Lemma 4.3, since d(s) ≥ 4, and completes the proof of the lemma. •

5 Ear decompositions and admissible splittings in

M-connected graphs

LetM = (E, I) be a matroid and let C1, C2, ..., Ct be a non-empty sequence of circuits
ofM. Let Dj = C1 ∪C2 ∪ ...∪Cj for 1 ≤ j ≤ t. We say that C1, C2, ..., Ct is a partial
ear decomposition of M if for every 2 ≤ i ≤ t the following properties hold:

(E1) Ci ∩Di−1 6= ∅,
(E2) Ci −Di−1 6= ∅,
(E3) no circuit C ′i satisfying (E1) and (E2) has C ′i − Di−1 properly contained in
Ci −Di−1.

The set Ci − Di−1 is called the lobe of circuit Ci, and is denoted by C̃i. An ear
decomposition of M is a partial ear decomposition with Dt = E. We need the following
facts about ear decompositions. The proof of (a) and (b) in the next lemma can be
found in [5]. The proof of (c) is easy and is omitted.

Lemma 5.1. Let M be a matroid. Then
(a) M is connected if and only if M has an ear decomposition.
(b) If M is connected then any partial ear decomposition of M can be extended to an
ear decomposition of M.
(c) If C1, C2, ..., Ct is an ear decomposition of M then

r(Di)− r(Di−1) = |C̃i| − 1 for 2 ≤ i ≤ t. (6)
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As an example, an ear-decomposition C1, C2 of the rigidity matroid of G = K3,5

can be obtained by taking the edge sets of two different K3,4 subgraphs of G. These
subgraphs are (intersecting) M -circuits in G and their union contains all edges of G.

Lemma 5.2. Let G = (V,E) be an M-connected graph and H1, H2, . . . , Ht be the
M-circuits of G induced by an ear decomposition of M(G) with t ≥ 2. Let H = Ht,
Y = V (H)− ∪t−1

i=1V (Hi), Z = E(H)− ∪t−1
i=1E(Hi), and let X = V (H)− Y . Then:

(a) either Y = ∅ and |Z| = 1, or Y 6= ∅ and every edge e ∈ Z is incident to Y ;
(b) |Z| = 2|Y |+ 1;
(c) X is critical in H;
(d) G[Y ] is connected.
(e) If G is 3-connected then |X| ≥ 3.

Proof: Since M -connected graphs are rigid, it follows that G, ∪t−1
i=1Hi, and H are

all rigid. Thus (E3) implies that (a) holds. Furthermore, r(E) = 2|V | − 3 and
r(∪t−1

i=1E(Hi)) = 2|V − Y | − 3. By Lemma 5.1(c) this implies that 2|Y | = |C̃t| − 1 =
|Z| − 1. This gives (b).

Since H is an M -circuit, we have |E(H)| = 2|V (H)| − 2. Hence, since |X| ≥ 2, (b)
implies that X is critical in H and hence (c) holds.

To prove (d) suppose that Y can be partitioned into two non-empty
sets Y1, Y2 with d(Y1, Y2) = 0. Since X is critical and H is an M -
circuit, we must have i(Yj) + d(Yj, X) ≤ 2|Yj| for j = 1, 2. This gives
|Z| =

∑2
j=1 i(Yj) + d(Yj, X) ≤ 2(|Y1| + |Y2|) ≤ 2|Y |, contradicting (b). Prop-

erty (e) follows from the fact that either Y 6= ∅ and X is a separator in G (using (c)),
or Y = ∅ and |X| = |V (H)| ≥ 4 (since H is an M -circuit). •

Let G be an M -circuit, v be a node of G and N(v) = {x, y, z}. Since G − xz
is rigid, G − v is rigid by Lemma 2.8(a). Thus Gx,y

v = G − v + xy is rigid. Since
|V (Gx,y

v )| = 2|E(Gx,y
v )| − 2, Gx,y

v contains a unique M -circuit C. We have C = Gx,y
v

if and only if the splitting of v on vx, vy is admissible. If not, V (C) is the minimal
v-critical set on {x, y} in G.

Lemma 5.3. Let G be an M-connected graph and H1, H2, . . . , Ht be the M-circuits
of G induced by an ear decomposition of M(G) with t ≥ 2. Let H = Ht, Y =
V (H)−∪t−1

i=1V (Hi) and X = V (H)−Y . Let v be a node of G in Y , and let x, y ∈ N(v)
with x /∈ X. Let C be the unique M-circuit in Hx,y

v . If E(C) ∩ EH(X) 6= ∅ and
E(Hx,y

v )− EH(X) ⊂ E(C), then splitting v on vx, vy is admissible in G.

Proof: Let H ′ = Hx,y
v , and N(v) = {x, y, z}. It suffices to show that

E(H1), E(H2), . . . , E(Ht−1), E(C) is an ear-decomposition of M(Gx,y
v ) since this will

imply that Gx,y
v is M -connected. Let Dt−1 = ∪t−1

i=1E(Hi). Then EH(X) ⊆ Dt−1 by
Lemma 5.2(a). Since E(Hx,y

v ) − EH(X) ⊂ E(C), ∪t−1
i=1E(Hi) ∪ E(C) = E(Gx,y

v ).
Properties (E1), (E2) and (E3) are clearly satisfied for 2 ≤ i ≤ t− 1. Property (E1)
follows for ‘i = t’ from the hypothesis that E(C) ∩ EH(X) 6= ∅ and the fact that
EH(X) ⊆ Dt−1. Property (E2) holds for ‘i = t’ since xy ∈ E(C) − Dt−1. To see
that (E3) holds for ‘i = t’ we proceed by contradiction. Suppose that there is an
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Section 5. Ear decompositions and admissible splittings in M -connected graphs 18

M -circuit C ′ with E(C ′) ∩ Dt−1 6= ∅ 6= E(C ′) − Dt−1 and C ′ − Dt−1 ⊂ C − Dt−1.
Since E(H1), E(H2), . . . , E(Ht) satisfies (E3), we must have xy ∈ E(C ′). Let C ′′ be
obtained from C ′ by a 1-extension, which deletes the edge xy, adds a new vertex v,
and the edges vx, vy, vz. Now C ′′ violates (E3) with respect to the ear decomposition
E(H1), E(H2), . . . , E(Ht) of M(G), a contradiction. •

Note that if splitting v along vx, vy is admissible in H, then the hypotheses of
Lemma 5.3 are trivially satisfied since we have C = Hx,y

v .

Theorem 5.4. Let G be a 3-connected M-connected graph which is not an M-circuit.
Let H1, H2, . . . , Ht be the M-circuits of G induced by an ear decomposition of M(G).
Suppose that G−e is not M-connected for all e ∈ E(Ht)−∪t−1

i=1E(Hi). Then V (Ht)−
∪t−1

i=1V (Hi) contains an admissible node of G.

Proof: Suppose the theorem is false and let G be a counterexample. Since G is not
an M -circuit, we have t ≥ 2. Let H = Ht, Y = V (H)− ∪t−1

i=1V (Hi), X = V (H)− Y .
Since G − e is not M -connected for all e ∈ E(Ht) − ∪t−1

i=1E(Hi), we have Y 6= ∅,
by Lemma 5.2(a). Let D = ∪t−1

i=1V (Hi). Since G is 3-connected, we have |X| ≥ 3
by Lemma 5.2(e). Note that every edge e ∈ E(H) − ∪t−1

i=1E(Hi) is incident to Y by
Lemma 5.2(a).

Suppose H = K4. Then the 3-connectivity of G implies that |Y | = 1. Let V (H) =
{v, x, y, z}, where Y = {y}. Then G− vx is a 1-extension of Dt−1. Thus, by Lemma
3.9, G−vx isM -connected, contradicting an hypothesis of the theorem. ThusH 6= K4.

By Lemmas 4.3 and 5.2(c), Y contains a node. Since G is not anM -circuit, G 6= Wn.
Lemma 4.1 implies that we can choose a node v of G in Y such that v is a leaf in
G[Y ∩ V3] = H[Y ∩ V3]. Let N(v) = {x, y, z}.

Claim 5.5. v does not have three neighbours in X.

Proof: For a contradiction suppose N(v) ⊂ X. Then, by Lemma 5.2(d), we must
have |Y | = {v}. If xy ∈ E(D) then G − xy is a 1-extension of D. Thus G − xy
is M -connected by Lemma 3.9, which contradicts an hypothesis of the theorem.
Hence xy /∈ E(D) and splitting off v on the pair vx, vy gives D + xy, which is again
M -connected by Lemma 3.9. Thus v is an admissible node of G. •

Claim 5.6. v does not have two neighbours in X.

Proof: Let N(v) ∩ X = {x, y}. If splitting off v along xz or yz is admissible in H
then by Lemma 5.3 it is an admissible split in G. Hence, by Lemma 4.4, we may
assume that there exist two minimal critical sets X1, X2 in H with x, z ∈ X1 and
y, z ∈ X2. Note that the minimality of X1 implies that the unique M -circuit C ′ in
Hx,z

v satisfies V (C ′) = X1.
Suppose |X ∩X1| ≥ 2. Then X ∪X1 and X ∩X1 are critical and d(X,X1) = 0 by

Lemma 4.2. Since d(v,X ∪X1) = 3, Lemma 2.15 now implies that X ∪X1 = H − v.
Hence (E(Hx,z

v )− E(X)) ⊆ E(C ′). Since X ∩X1 is critical, H[X ∩X1] is connected
(it is either K2 or is 2-connected by Lemma 2.6(a)) and hence E(X) ∩ E(C ′) 6= ∅.
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Thus v is admissible in G by Lemma 5.3. Hence X ∩ X1 = {x} and, by symmetry,
X ∩X2 = {y}.

If |X1 ∩X2| ≥ 2 then X1 ∪X2 = V (H)− v and {x, y} is a 2-separator in G. This
contradicts the 3-connectivity of G and hence |X1∩X2| = 1. Now Lemma 2.2 implies
that d(X,X1, X2) = 0. This again implies that {x, y} is a 2-separator in G, and gives
a contradiction. •

Claim 5.7. There is a set X ′ ⊂ V (H) such that X ′ is node-critical in H and X ⊆ X ′.

Proof: It follows from Claims 5.5, 5.6 that v has at most one neighbour in X.

Case 1 v has exactly one neighbour, say x, in X.
Since v is a leaf, we may assume without loss of generality that dH(y) ≥ 4. If splitting
off v along xz or yz is admissible in H then by Lemma 5.3 it is an admissible split in
G. Hence, by Lemma 4.4, we may assume that there exist two minimal critical sets
X1, X2 in H with x, z ∈ X1 and y, z ∈ X2. If |X ∩X1| ≥ 2 then Lemma 4.2 implies
that X ∪X1 is the desired node critical set containing X in H. Hence

X ∩X1 = {x}. (7)

Suppose |X ∩ X2| ≥ 2. Then Lemma 4.2 implies that X ∪ X2 is critical and
d(X,X2) = 0. Since N(v) ⊆ X ∪X2, Lemma 2.15 gives X ∪X2 = V (H)− v. Hence
the unique circuit C ′ in Hyz

v satisfies (E(Hy,z
v )−E(X)) ⊆ E(C ′) and E(X)∩E(C ′) 6= ∅

(because X ∩X2 is also critical, so H[X ∩X2] is connected). Thus v is admissible in
G by Lemma 5.3. Hence

|X ∩X2| ≤ 1. (8)

If |X1 ∩ X2| ≥ 2 then we may deduce as above that X1 ∪ X2 = V (H) − v must
hold. Since |X| ≥ 3, this contradicts either (7) or (8). Thus X1 ∩X2 = {z}. Hence
z is not a node by Lemma 4.5(a). Thus dH(z) ≥ 4. We now choose a critical set X3

in H with x, y ∈ X3 (if it did not exist then splitting v along xy would be admissible
in G). By symmetry we have |X3 ∩ X2| = 1. If |X3 ∩ X| ≥ 2 then X ∪ X3 is the
desired node-critical set. Hence |X3∩X| = 1 and Lemma 2.2 gives that X1∪X2∪X3

is critical. Hence X1 ∪X2 ∪X3 = V (H)− v. We may now deduce that |X| ≤ 2, since
X ⊆ X1 ∪X2 ∪X3 and X ∩ (X1 ∪X3) = {x} and |X ∩X2| ≤ 1. This contradicts the
fact that |X| ≥ 3.

Case 2 N(v) ∩X = ∅.
We have x, y, z ∈ Y . Since v is a leaf we may assume, without loss of generality,
that dH(x) ≥ 4 and dH(y) ≥ 4. Lemma 5.3 implies that v is not splittable along
yz or zx. Thus there exist minimal critical sets X1 and X2 in H on {y, z} and
{z, x} respectively. If two neighbours of v form a 2-separator in H, then the fact
that G[X] is connected implies that this will also be a 2-separator in G. This
contradicts the 3-connectivity of G. Lemma 4.5 now implies that |X1 ∩X2| ≥ 2 and
X1 ∪ X2 = V (H) − v (possily after renaming x, y, z in the case when dH(z) ≥ 4).
Since |X| ≥ 3, we may assume by symmetry that |X1 ∩ X| ≥ 2. Now Lemma 4.2
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implies that X ∪X1 is the required v-critical set containing X. •

Choose a maximal node-critical set X∗ ⊂ V (H) with X ⊆ X∗. Then X∗ is
v-critical for some node v. Applying Lemma 4.3 to the critical set X∗ ∪ {v}, we
deduce that H−X∗−v contains a node. Lemma 4.1 now implies that we may choose
a leaf w in H[V3−X∗−v]. Then w has at most one neighbour in X∗ (otherwise X∗+w
would either contradict Lemma 2.15 or be a larger node critical set than X∗.) Thus w
is either a leaf in H[V3] or is a series node with a unique neighbour r in X∗, such that
r is a node. Using Lemma 4.6, the 3-connectivity of G and the maximality of X∗,
we can deduce that w is admissible in H (and hence in G). This proves the theorem. •

We shall also need

Theorem 5.8. [1, Theorem 3.8] Let G be a 3-connected M-circuit with at least five
vertices. Then either G has three non-adjacent admissible nodes or G has four ad-
missible nodes.

Theorems 5.4 and 5.8, and Lemmas 3.3 and 3.4 imply the following extension of [1,
Theorem 4.4].

Corollary 5.9. G = (V,E) is M-connected if and only if G is a connected graph
obtained from disjoint copies of K4’s by recursively applying edge additions and 1-
extensions within a connected component, and taking 2-sums of different connected
components.

6 Bricks

A graph G is a brick if it is 3-connected and M -connected. A brick G = (V,E) is said
to be minimal if G−e is not a brick for all e ∈ E. An edge f of G is admissible if G−f
is M -connected. A node v of G is feasible if Gv is a brick for some splitting Gv of G at
v. A fragment in a 2-connected graph H is a set X ⊆ V (H) such that |NH(X)| = 2
and 1 ≤ |X| ≤ |V (H)| − 3. Let N be a 2-separator in H, x, y ∈ V (H) and e ∈ E(H).
We say that N separates x and y if x and y belong to different components of H−N .
We say that N separates x and e if either x and e belong to different components of
H −N , or e is an edge from N to a component of H −N which does not contain x.

Theorem 6.1. Let G be a minimal brick. If G 6= K4 then G has a feasible node.

Proof: We proceed by contradiction. Suppose the theorem is false and let G be
a counterexample with as few vertices as possible. If G is minimally M -connected
then G has an admissible splitting Gx,y

w by Theorems 5.4 and 5.8. Since G is a
counterexample to the theorem, G′ = Gx,y

w is not 3-connected. On the other hand, if G
is not minimally M -connected, then G has an admissible edge f . Since G is a minimal
brick, G′ = G − f is not 3-connected. We now consider all possible choices for an
admissible splitting and an admissible edge, and choose one such that some fragment
X of the resulting M -connected graph G′ is minimal with respect to inclusion.
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We shall prove that X contains a feasible node of G. Since G′ is M -connected,
G′ has minimum degree at least three and hence |X| ≥ 2. By Lemma 3.5, G′ has
no polygons. Let N := NG′(X) = {u, v}. Let H,K be the cleavage graphs obtained
by cleaving G′ at {u, v}, where X = V (H) − {u, v}. Note that the minimality of X
and the fact that G′ has no polygons imply that H is a cleavage unit of G′, and the
3-connectivity of G implies that K − {u, v} is connected.

If G′ = Gx,y
w and N(w) = {x, y, z}, then let V ∗(H) = X − {x, y, z} and E∗(H) =

(E(H) ∩ E(G))− uv. (The 3-connectivity of G implies that either x, y ∈ X ∪N and
z ∈ V (K) − N , or x, y ∈ V (K) and z ∈ X.) On the other hand, if G′ = G − f and
f = yz, then let V ∗(H) = X−{y, z} and E∗(H) = E(H)−uv. (The 3-connectivity of
G implies that {y, z}∩X 6= ∅ and {y, z}∩ (V (K)−N) 6= ∅.) Let θ = xy if G′ = Gx,y

w

and xy ∈ E(H), let θ = z if G′ = Gx,y
w and xy 6∈ E(H), and let θ be the unique vertex

of X which is incident to f in G if G′ = G− f .

Claim 6.2. H is 3-connected.

Proof: This follows since G′ has no polygons and hence all its cleavage units are
3-connected. •

Claim 6.3. uv 6∈ E(G).

Proof: Suppose uv ∈ E(G). Since G′ is M -connected, and u, v is a 2-separator,
Lemma 3.8 implies that G′ − uv is M -connected. Since G − uv is obtained from
G′ − uv by either an edge addition or a 1-extension, G − uv is M -connected by
Lemma 3.9. Futhermore, G′ − uv contains three internally disjoint uv-paths (two
in H − uv by Claim 6.2 and one in K − uv). Thus G − uv has three internally
disjoint uv-paths and the 3-connectivity of G implies that G − uv is 3-connected.
This contradicts the fact that G is a minimal brick. •

Claim 6.4. H and K are M-connected.

Proof: This follows from Lemma 3.4 since G′ is M -connected and G′ = H ⊕2 K. •

Claim 6.5. Suppose that G − e is M-connected for some e ∈ E∗(H). Then H −
{u, v, e} is connected.

Proof: Suppose H − {u, v, e} has two components H1, H2. Choose i ∈ {1, 2} such
that θ 6∈ V (Hi) ∪ E(Hi). Then V (Hi) is a fragment of G − e which is properly
contained in X. This contradicts the choice of G′ and X. •

Claim 6.6. G− e is not M-connected for all e ∈ E∗(H).

Proof: Suppose that G− e is M -connected for some edge e = ab ∈ E∗(H). Since G
is a minimal brick, G− e is not 3-connected. Let L be a 2-separator in G− e. Since
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G is 3-connected, L separates a and b. If G′ = Gx,y
w then Lemma 2.20 implies that

w 6∈ L.
Since G′ is M -connected, it is 2-rigid. Hence the graph G′′ = G′ − e is rigid. Thus

G′′ is 2-connected by Lemma 2.6(a). Clearly, L and N are 2-separators in G′′. By
Lemma 3.6, L and N do not cross in G′′. By Claim 6.5, H − {u, v, e} is connected.
Since a, b ∈ X ∪N and L separates a and b in G− e, we have L∩X 6= ∅ and G′′[X] is
a component of G′′−N . Since L and N do not cross, we have L∩ (V −X −N) = ∅.
Since K − N is connected, some component J ′ of G′′ − L = G′ − e − L contains
V −X −N . Let J be the component of G− e−L which contains V −X −N . Then
V − X ⊂ V (J) ∪ NG−e(J). Moreover, if G′ = Gw, then the neighbour(s) of w in X
are contained in V (J)∪NG−e(J), and, if G′ = G− f then the endvertex of f in X is
contained in V (J) ∪ NG−e(J). This implies in both cases that the vertex set of the
component of G − e − L distinct from J is a proper subset of X. This contradicts
the minimality of X. •

Claim 6.7. H − e is not M-connected for all e ∈ E∗(H).

Proof: Suppose H − e is M -connected. Then G′ − e = (H − e) ⊕2 K and G′ − e
is M -connected by Claim 6.4 and Lemma 3.3. Since, by Lemma 3.9, the property
of being M -connected is preserved by edge addition and 1-extension, it follows that
G− e is M -connected. This contradicts Claim 6.6. •

Claim 6.8. Suppose p ∈ V ∗(H) is a node of G, NG(p) = {q, s, t}, and Gs,t
p is M-

connected. Then Hs,t
p − {u, v} is connected.

Proof: Suppose Hs,t
p − {u, v} is disconnected. Then H − {u, v} has a 1-separation

(H1, H2) where V (H1)∩V (H2) = {p}, s, t ∈ V (H1) and q ∈ V (H2). Choose i ∈ {1, 2}
such that θ 6∈ V (Hi)∪E(Hi). Then V (Hi)− p is a fragment of Gs,t

p which is properly
contained in X. This contradicts the choice of G′ and X. •

Claim 6.9. Gp is not M-connected for all nodes p of G in V ∗(H).

Proof: Suppose that Gp = Gs,t
p is M -connected for some node p of G in V ∗(H),

with NG(p) = {q, s, t}. Since G is a counterexample to the theorem, Gs,t
p is not 3-

connected. Let L be a 2-separator in Gs,t
p . Since G is 3-connected, L separates st and

q. If G′ = Gx,y
w then Lemma 2.20 implies that w 6∈ L.

Since G′ is M -connected, it is 2-rigid. Hence G′ − pq is rigid. Since G′ − p is
obtained from G′ − pq by deleting a vertex of degree two, it is rigid by Lemma
2.8(b). Since G′′ = (G′)s,t

p is obtained from G′ − p by an edge addition, it is also
rigid. Thus G′′ is 2-connected by Lemma 2.6(a). Clearly, L and N are 2-separators
in G′′. By Lemma 3.6, L and N do not cross in G′′. By Claim 6.8, Hs,t

p − {u, v} is
connected. Since q, s, t ∈ X ∪N and L separates st and q in G′′, we have L ∩X 6= ∅
and G′′[X − p] is a component of G′′ − N . Since L and N do not cross, we must
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have L ∩ (V −X −N) = ∅. Hence some component J ′ of G′′ − L = G′p − L contains
V −X −N . Let J be the component of Gs,t

p − L which contains V −X −N . Thus
V − X ⊂ V (J) ∪ NGp(J). Moreover, if G′ = Gw, then the neighbour(s) of w in X
are also contained in V (J) ∪ NGp(J), and, if G′ = G − f then the endvertex of f
in X is contained in V (J) ∪ NGp(J). This implies in both cases that the vertex set
of the component of Gp − L which is distinct from J is a proper subset of X. This
contradicts the minimality of X. •

Claim 6.10. Hp is not M-connected for all nodes p of G in V ∗(H).

Proof: Suppose Hp is M -connected. Then G′p = (Hp)⊕2 K and G′p is M -connected
by Claim 6.4 and Lemma 3.3. Since the property of being M -connected is preserved
by edge addition and 1-extension, it follows that Gp is M -connected. This contradicts
Claim 6.9. •

Claim 6.11. H is an M-circuit.

Proof: Suppose H is not an M -circuit. Since H is M -connected by Claim 6.4, we
may choose an ear decomposition C1, C2, . . . , Ct of M(G). Let Hi be the M -circuit
of H induced by Ci for 1 ≤ i ≤ t. By Lemma 5.1(b) we may suppose that the ear
decomposition has been chosen such that H1 contains uv and θ. By Claims 6.2, 6.7
and Theorem 5.4, Ht − ∪t−1

i=1Hi contains an admissible node p of G in V ∗(H). This
contradicts Claim 6.10. •

Claim 6.12. H is isomorphic to K4.

Proof: Suppose H is not isomorphic to K4. By Claim 6.10, no node of H in V ∗(H) is
admissible in H. Since uv ∈ E(H), Claim 6.2 and Theorem 5.8 imply that G′ = Gx,y

w ,
x, y ∈ V (H), and u, v, x, y are the only admissible nodes in H. We shall show that x
is a feasible node in G.

Since x is an admissible node of H, Hs,t
x is M -connected for some s, t ∈ NH(x).

Let NH(x) = {q, s, t}. Since xy is an edge of H and y is a node of H, we must have
y ∈ {s, t}. Without loss of generality, y = t. Since (G′)s,y

x = Hs,y
x ⊕2K, Claim 6.4 and

Lemma 3.3 imply that (G′)s,y
x is M -connected. Since Gs,w

x is a 1-extension of (G′)s,y
x

and since the property of being M -connected is preserved by 1-extension (by Lemma
3.9), it follows that Gs,w

x is M -connected.
Suppose Hs,y

x −{u, v} is disconnected. Then H−{u, v} has a 1-separation (H1, H2)
where V (H1) ∩ V (H2) = {x}, s, y ∈ V (H1) and q ∈ V (H2). Then V (H2) − x is a
fragment of Gs,w

x which is properly contained in X. This contradicts the choice of G′

and X. Thus Hs,y
x − {u, v} is connected.

Since G is a counterexample to the theorem, Gs,w
x is not 3-connected. Let L be

a 2-separator in Gs,w
x . Since G is 3-connected, L separates sw and q. Since G′ is

M -connected, it is 2-rigid. Hence G′ − xq is rigid. Since G′ − x is obtained from
G′ − xq by deleting a vertex of degree two, it is rigid by Lemma 2.8(b). Since
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G′′ = (G′)sy
x is obtained from G′ − x by an edge addition, it is also rigid. Thus G′′

is 2-connected by Lemma 2.6(a). Clearly, L and N are 2-separators in G′′ and L
separates sy and q in G′′. By Lemma 3.6, L and N do not cross. Since Hs,y

x − {u, v}
is connected, q, s, y ∈ X ∪ N , and L separates sy and q in G′′, we have L ∩ X 6= ∅
and G′′[X − x] is a component of G′′−N . Since L and N do not cross, we must have
L ∩ (V −X − N) = ∅. Hence some component J ′ of G′′ − L = (G′)s,y

x − L contains
V −X −N . Let J be the component of Gs,y

x − L which contains V −X −N . Then
V −X ⊂ V (J)∪NGs,y

x
(J). Moreover, w and y are also contained in V (J)∪NGs,y

x
(J).

This implies that the vertex set of the component of Gs,y
x − L which is distinct from

J is a proper subset of X. This contradicts the minimality of X. •

Claim 6.13. G′ = Gx,y
w , x, y ∈ V (H), and hence θ = xy ∈ E(H).

Proof: Suppose that the claim is false. Then θ is a vertex in X, and
V (H) = {u, v, θ, t}. Let t be the vertex of X distinct from θ. Then t is a
node of G. We shall show that Gu,v

t is a brick. Note that uv 6∈ E(G) by Claim
6.3. Note further that Gu,v

t can be obtained from K by a sequence of either one
1-extension and one edge-addition (if G′ = G − f), or two 1-extensions and one
edge-addition (if G′ = Gx,y

w ). Since K is M -connected by Claim 6.4, it follows from
Lemma 3.9 that Gu,v

t is M -connected. Since θ is adjacent to u and v, there is no
2-separation separating θ from uv in Gu,v

t . Thus Gu,v
t is 3-connected and hence is a

brick. •

Claim 6.14. X 6= {x, y}.

Proof: Suppose that X = {x, y}. Then x, y are nodes of G. We shall show that
Gw,v

x is a brick. Note that wv 6∈ E(G) since the neighbour of w distinct from x, y
belongs to V −X−N . Note further that Gw,v

x can be obtained from K by a sequence
of two 1-extensions. Since K is M -connected by Claim 6.4, it follows from Lemma
3.9 that Gw,v

x is M -connected. Suppose that Gw,v
x is not 3-connected. Then there is

a 2-separator L in Gw,v
x , separating u and wv. Since u,w, and v are all neighbours

of y in Gw,v
x , we must have y ∈ L. Since Gw,v

x is M -connected and y is a node
in Gw,v

x , this contradicts Lemma 2.20. Thus Gw,v
x is 3-connected and hence is a brick. •

We can now complete the proof of the theorem. Using Claims 6.13 and 6.14, and
relabelling if necessary, we may suppose that X = {x, t} and N = {u, y}. Thus x
is a node of G. We shall show that Gw,t

x is a brick. Note that wt 6∈ E(G) since the
neighbour of w distinct from x, y belongs to V −X −N . Note further that Gw,t

x can
be obtained from K by a sequence of two 1-extensions. Since K is M -connected by
Claim 6.4, it follows from Lemma 3.9 that Gw,t

x is M -connected. Suppose that Gw,t
x is

not 3-connected. Then there is a 2-separator L in Gw,t
x , separating u and wt. Since

ut is an edge of Gw,t
x , we must have t ∈ L. Since Gw,t

x is M -connected and t is a node
in Gw,t

x , this contradicts Lemma 2.20. Thus Gw,t
x is 3-connected and hence is a brick. •

We have the following corollaries:
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Theorem 6.15. G = (V,E) is a brick if and only if G can be obtained from K4 by
1-extensions and edge additions.

Proof: Since K4 is M -connected, sufficiency follows from Lemma 3.9, and the fact
that edge addition and 1-extension preserve 3-connectivity. Necessity follows easily
by induction on |E|, using Theorem 6.1. •

Note that a brick G does not necessarily have a spanning subgraph which is a 3-
connected M -circuit. In fact, the brick K3,5 has no spanning M -circuits at all since all
of its M -circuits are isomorphic to K3,4. This shows that one may need to alternate
between the two operations of Theorem 6.15 while building up a brick from K4.

Theorem 3.2 implies that a graph is a brick if and only if it is 2-rigid and 3-
connected. Thus Theorem 6.15 gives an inductive construction for 3-connected 2-rigid
graphs. Since K4 is globally rigid, and edge addition as well as 1-extension preserve
global rigidity (by the result of Connelly [4] mentioned in Section 1), we can now
deduce that Hendrickson’s conjecture is true in dimension 2.

Theorem 6.16. Let G be a graph with |V (G)| ≥ 4. Then G is globally rigid in R
2 if

and only if G is 3-connected and 2-rigid.

Thus global rigidity of frameworks is a generic property in R
2.

Lovász and Yemini [12] proved that 6-connected graphs are 2-rigid (and that this
bound is best possible). With this result and Theorem 6.16 we can show that suffi-
ciently highly connected graphs are globally rigid. In fact, the same degree of connec-
tivity suffices.

Theorem 6.17. Let G be 6-connected. Then G is globally rigid in R
2.

This solves [6, Open question 4.47].
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